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ABSTRACT 

TALLEY, MATTHEW LOWELL. Bubble Coalescence Control Development for Level Set 

Interface Tracking Method. (Under the direction of Dr. Igor A. Bolotnov). 

      The level-set interface tracking method in connection with direct numerical simulation of 

turbulence is an important tool for development of improved closure laws for multiphase 

computational fluid dynamic models. However, the standard formulation of level-set interface 

tracking method is unable to accurately represent the bubble coalescence process. Physically, 

when two bubbles approach, a thin liquid film develops between the bubbles. If this film has 

sufficient time to drain, then the bubbles will coalesce. Otherwise, the bubbles will bounce off 

one another. However, the standard level set method will cause coalescence of any bubbles 

that approach close to one another. Also, since the level-set method uses a smoothed Heaviside 

function to transition between phase properties, this causes the coalescence process to begin 

sooner than experimentally observed since the thin liquid film represented by the method has 

somewhat mixed gas/liquid properties. In order to simulate the coalescence process more 

accurately, an algorithm was developed to prevent or slow the coalescence process. This 

algorithm locally changes the surface tension on a portion of the bubble surface when it detects 

that two bubbles approach each other. This local change in surface tension creates a net force 

that repels the bubbles. The algorithm is also capable of tracking the amount of time the surface 

tension has been changed to slow the coalescence process. It compares it to a coalescence time 

model and removes the changed surface tension if the prescribed model time has been 

exceeded. In order to test the capabilities of the algorithm, the following simulations were 

designed and performed: (i) two bubbles in laminar flow approaching one another, (ii) 32 

bubbles in turbulent flow conditions, and (iii) a bubble rising towards a free surface. The first 
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two simulations tested the identification and prevention portion of the algorithm. The last 

simulation tested the time tracking portion of the algorithm. In all cases, the program was able 

to prevent or slow the coalescence process. An increase in computational cost from 10-25% 

was observed when using this algorithm. Mesh studies and another set of simulations were 

performed in order to verify the algorithm is performing properly and better simulate physical 

coalescence.   
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CHAPTER 1 INTRODUCTION 

     The development of new generation of advanced nuclear reactors requires robust tools to 

predict thermal hydraulic behavior in complex geometries. Interface tracking approach with 

direct numerical simulation (DNS) of turbulence may not yet allow the prediction of large 

systems, but represents a valuable tool in development of closure laws for multiphase 

computational fluid dynamics (M-CFD) models. Massively parallel finite element based code, 

PHASTA [ 1 ] is a one such DNS software package that uses level set interface tracking to 

model the fully resolved bubbly flows. However, the standard level-set approach lacks the 

capability to represent the physics of bubble coalescence. 

     The objective of this research is to present an algorithm developed for the level-set approach 

that is used in PHASTA that controls bubble coalescence events. This consists of how the 

algorithm works to identify and simulate coalescence events in multiphase bubbly flows, 3D 

simulation results when using the algorithm, and the algorithm’s verification and validation 

based on available experimental results. 

      Chapter 2 consists of a literature review that details previous research performed on bubble 

coalescence through analytical, experimental, and numerical studies. The former includes 

research with DNS and the level-set approach. 

      Chapter 3 describes the development of the algorithm to: (i) simulate liquid film the 

drainage time using a force to counteract the motion of the approaching bubbles; (ii) identify 

the coalescence event locations; (iii) model how long the force should be active for each event 

to give the bubbles the opportunity to move away from (bounce off) one another. 
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      Chapter 4 presents several simulations performed using the coalescence control algorithm 

for different purposes based on certain conditions. This includes preventing all coalescence 

events and using the application time portion of the algorithm to allow some events to occur. 

      Chapter 5 covers the verification and validation of the coalescence control algorithm based 

on other experimental and simulation results. 

      Chapter 6 provides a discussion of the results and covers the necessary future work to 

continue to develop the algorithm. 

CHAPTER 2 LITERATURE REVIEW 

2.1 General Overview 
 

      Up until recently, the study of bubble coalescence in two-phase flow could be characterized 

into two major categories: surfactant/impurity effects on coalescence and the mechanics behind 

the coalescence process [ 2 ]. However, with the continuing development of computing power, 

a third category could be added. This third category consists of applying the analytical models 

of the first two categories to numerical analysis of bubble coalescence. 

      The analytical analysis of bubble coalescence mainly focuses on the drainage of the thin 

liquid film that develops between two approaching bubbles. It was determined in early 

analytical studies of bubble coalescence to break the process into two separate regimes: (1) an 

initial drainage regime where the film drains to a thickness such that rupture can occur and (2) 

a final drainage regime where molecular forces become significant and rupture occurs [ 3 ], [ 

4 ], [ 5 ], [ 6 ]. An extensive review of the concepts used in early analytical models is covered 

by Lee and Hodgson [ 4 ] as they described the types of forces present near the film, the flow 
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of the liquid film, and the mobility of the interface under varying surfactant effects (See Figure 

1). As the research progressed, models were developed to calculate the film thickness of the 

bubbles at the different drainage regimes based on physical properties [ 3 ], [ 5 ], [ 6 ]. These 

film thickness calculations also lead the authors to develop models for the time required for 

coalescence to occur. Prince and Blanch [ 7 ] furthered the development of coalesce time 

models by taking into account bubble collisions caused by turbulence, buoyance, laminar shear 

as well as the efficiency of these collisions. Their model was developed with distilled water as 

an assumption but was found to be inadequate when applied to systems with a significant 

amount of solute because of the large decrease in the coalescence rate. This was attributed to 

the effects of turbulence on surface mobility, the dynamics of bubble collisions, and the solute 

concentration at the gas-liquid interface of the coalescing bubbles. 

      Many analytical models for coalescence were also developed in conjunction with 

experimental studies and measurements. As mentioned previously, many of the studies focused 

on one of two categories. For a more comprehensive review on surfactant effects on bubble 

coalescence, one is referred to Marrucci and Nicodemo [ 8 ], Lessard and Zieminski [ 9 ], Cain 

and Lee [ 10 ], Kim and Kook [ 11 ], Craig et al. [ 12 ], and Danov et al. [ 13]. For the mechanics 

of bubbles coalescence, the areas of study frequently focused on the dynamics of the liquid 

flow and the properties of the liquid in which the bubbles are immersed. It was found that for 

bubbles vertically aligned, coalescence would occur even if the calculated infinite rise velocity 

suggested that it was impossible [ 14 ].  
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Figure 1: Figure reproduced from Lee and Hodgson [ 4 ]. Interface mobility with soluble surfactant: expansion determined 

by mass transfer. (i) Normal diffusion from outside film. (ii) Normal diffusion from inside film. (iii) Radial diffusion 

following depletion of film. 

 

 

 

For bubbles rising in a stagnant liquid, it was determined that the only forces active on the 

second bubble were the buoyance force and the inertia drag force. The second bubble could 

approach the first bubble to coalesce because the inertia drag force would be reduced once the 

second bubble entered the wake of the first bubble [ 14 ], [ 15 ]. It was also found by de Nevers 

and Wu [ 15 ] that it was necessary to add a small amount of sodium ethyl xanthate to the 

distilled water in order to reduce surface tension and promote coalescence. This result may 

also be explained in conjunction with the work of Kirkpatrick and Lockett. They observed that 

when bubbles approach one another with a velocity greater than 12 𝑐𝑚 𝑠⁄ , the bubbles would 

Liquid Flow 

(i) 

(ii) 

(iii) 



www.manaraa.com

 

5 

come to rest before the film thickness would rupture [ 16 ] (See Figure 2). This allows the 

stored strain energy in the film to act on the bubbles and push them away from one another 

resulting in the bubbles bouncing off one another.  

 

 

 

Figure 2: Graph of film thickness vs. time reproduced from data reported by Kirkpatrick and Lockett [ 16 ]. The above 

plot shows that only approach velocities less than 12 cm/s allow enough time for the liquid film to drain and the interface 

to rupture. 
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collision when the bubbles begin to “dance” with one another. Sanada et al. [ 2 ] in their 2005 

study observed that an increasing Weber (We) number lead to a bubble bouncing off a free 

surface which in effect lengthens the coalescence time. A later study in 2009 by Sanada et al. 

[ 18 ] showed that the critical Reynolds (Re) number over which bubbles bounced decreased 

with an increase in Mo. They also showed that irrespective of the Mo value, a critical We value 

for bouncing was approximately equal to 2.0. It is important to note that for both Re and We 

in the 2009 study that a vertical rise velocity was used to calculate the non-dimensional 

numbers. Unlike the previous experiments, Kang et al. [ 19 ]  performed an experiment that 

did not use non-dimensional numbers. They measured the effects of nonuniform temperature 

distribution on bubble coalescence. They found that because of thermocapillary forces from 

the nonuniform temperature, it caused one of the bubbles to glide over the surface of the other 

bubble which resulted in a coalescence probability distribution based on coalescence angle. It 

was observed that the highest probability of coalescence occurred between 20° − 40° angle. 

The angle between the temperature gradient and line connecting the bubble centers (See Figure 

3). 

      As the mechanics of coalescence became better understood, some research shifted focus to 

modeling coalescence rates and void fraction over the length of a tube with bubbly flow [ 20 

], [ 21 ]. Kamp et al. [ 22 ] took the work further by making the models more robust through 

two steps. The first step took an expression for collision frequency and coalescence probability 

of equal bubbles during turbulence-driven, high Re collisions [ 23 ] and altered it to be 

applicable for unequal bubbles and to account for interactions between the bubbles and flow 

as well as between bubble-bubble. In the second step, the coalescence rate is used in the 
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transport equation to find source terms which can be calculated in a CFD code. This results in 

a more robust CFD code to predict evolution of bubble sizes. Mattson and Mahesh [ 24 ] took 

the expression of coalescence time scale from the previous model by Kamp et al. [ 22 ] and 

used it to develop a probability of coalescence. They then validated it using the result form 

Colin et al. [ 20 ] and find excellent agreement between the bubble size distributions. For a 

more comprehensive review of CFD studies on bubble coalescence, one is referred to Olmos 

et al. [ 25 ], Sommerfeld et al. [ 26 ], and van den Hengel et al. [ 27 ]. However, since CFD 

codes use approximations, they are unable to account for all of the fluid and bubble behavior 

and require DNS studies [ 24 ], [ 28 ]. 

 

 

 

Figure 3: The picture shows how the coalescence angle is defined. 

 

 

 

     DNS simulations use numerical techniques to solve the time dependent Navier-Stokes 

equations in three dimensions [ 29 ]. For a review of multiphase DNS simulations, one is 
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referred to Crowe et. al. [ 30 ]. For DNS simulations, many different methods have been 

proposed to track the bubble interfaces including the Front-Tracking (FT) method, the Volume-

of-Fluid (VOF) method, the Lattice Boltzmann (LBM) method, and the Level-Set (LS) 

method. The majority of the mention methods inherently incorporate coalescence of bubbles 

without any issue. The FT method however uses two separate grids for the two different phases 

and is unable to represent coalescence without a subgrid model. The VOF method can simulate 

coalescence but it is difficult to calculate the curvature from the front using volume fractions. 

Van Sint Annaland et al. [ 31 ] and Sussman et al. [ 32 ] provide a more comprehensive review 

of each of the above mentioned interface tracking methods. For more specific review of the 

FT, VOF, and LBM, one is referred to the following: Unverdi and Tryggvason [ 33 ], van Sint 

Annaland et al. [ 31 ], and Dabiri et al. [ 29 ] for FT, van Sint Annaland et al. [ 34 ] and 

Passandideh-Fard et al. [ 35 ] for VOF, and Takada et al. [ 36 ] and Inamuro et al. [ 37 ] for 

LBM. 

     The LS method uses a distance field to track the bubbles. The bubble-fluid interface is 

identified by a distance field value of zero. The method also uses a smoothed Heaviside 

function to shift between gaseous and liquid properties across the interface. For more 

information on the LS method, one is referred to two papers by Sussman et al., one published 

in 1994 [ 38 ] and one published in 1999 [ 32 ], and by Osher and Fedkiw [ 39 ]. The LS method 

was further tested and validated using experimental data from Kirkpatrick and Lockett [ 2 ]. A 

bubble and free surface were modeled in a two dimensional simulation with a grid resolution 

of 150 x 150 or 40 points per diameter. In order to prevent coalescence, the two interfaces were 

modeled using two independent distance functions. The bubble bounced with the free surface 
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in the simulation just as seen in the experiment (See Figure 4). It was also determined that the 

We number causing bouncing is constant and that the coalescence time increases with 

increasing We number. Yang et al. [ 40 ] continued development with the LS method by 

combining it with the VOF method to make a hybrid called the adaptive coupled level-

set/volume-of-fluid (ACLSVOF) method. They found that ACLSVOF took advantage of the 

strengths of both the LS and VOF methods by making the surface tension calculations easier 

and more accurate while also keeping the mass conserved accurately. Yu and Fan [ 41 ] also 

studied the accuracy of the LS method. They performed simulations for a bubble rising in an 

infinite liquid by means of the buoyancy force in a three dimensional environment. They 

investigated the bubble shapes based on the Re and found good agreement between their 

simulations and experimental results. They also studied the shape of bubbles during 

coalescence with the LS method and noted a deviation in the shape of the second bubble 

compared with a single bubble case. They mentioned that no successful method has been 

developed to portray bouncing and coalescence based on the dynamic conditions of when they 

collide and that whether the bubbles will coalesce or bounce must be decided before the 

simulation is run.  

 

2.2 Level-Set Method Overview 
 

     In order to understand how the coalescence control algorithm detects coalescence events, a 

more in depth understanding of the LS method is required. As previously mentioned, one may 

find more information on the LS method in two papers by Sussman et al., one published in 

1994 [ 38 ] and one published in 1999 [ 32 ], and by Osher and Fedkiw [ 39 ]. For this deeper 
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look into the LS method, the following section has been taken from a paper written by Bolotnov 

et al. [ 42 ] to provide the necessary background. 

 

 

 

Figure 4: Plot reproduced from data reported by Sanada et. al [ 2 ]. The above plot is a comparison of experimental results 

and calculations. It shows that their simulation was able to closely model what was observed by Kirkpatrick and Lockett [ 

16 ]. 

 

 

 

     The level set method of Sussman [ 43 ], [ 44 ], [ 32 ] and Sethian [ 45 ] involves modeling 

the interface as the zero-level set of a smooth function, φ, where φ is often called the first scalar 

and it represents the signed distance from the interface. Hence, the interface is defined by φ = 

0. The scalar, φ, is convected within a moving fluid according to, 
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physical properties using a step change across the interface leads to poor computational results, 

the properties near an interface were defined using a smoothed Heaviside kernel function (See 

Figure 5), Hε, given by [ 32 ]: 

,0

1 1 ,( ) 1 sin
2

,1

H

 

   
  

 

 


         
  




 ( 2 ) 

where ε is the interface half-thickness. 

 

 

 

Figure 5: A plot of the  smoothed Heaviside function that represents the transition of gas to liquid fluid properties 
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The surface tension transition between the fluids is defined by: 

𝛾𝜅𝛿(𝑛)𝒏 = 𝛾𝜅(𝜑)
𝑑𝐻𝜀(𝜑) 

𝑑𝜑
∇(𝜑) ( 5 ) 

Although the solution may be reasonably good in the immediate vicinity of the interface, the 

distance field may not be correct throughout the domain since the varying fluid velocities 

throughout the flow field distort the level set contours. Thus, the level set was corrected with 

a re-distancing operation by solving the following PDE [ 44 ]: 

( ) 1
d

S d



     

 ( 6 ) 

where d is a scalar that represents the corrected distance field and τ is the pseudo time over 

which the PDE is solved to steady-state. This may be alternately expressed as the following 

transport equation: 

( )
d

w d S 



  


 ( 7 ) 

The so-called second scalar, d, is originally assigned the level set field, φ, and is convected 

with a pseudo velocity, w , where, 

( )
d

w S
d







 ( 8 ) 

and S(φ) is defined as: 
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where 휀𝑑 is the distance field interface half-thickness which, in general, may be different from 

ε used in Eq. ( 2 ). Note that the zeroth level set, or interface, φ = 0, does not move since its 

convecting velocity, w, is zero. Solving the second scalar to steady-state restores the distance 

field to 1d   but does not alter the location of the interface. The first scalar, φ, is then 

updated using the steady solution of the second scalar, d. 

      Sussman et al. [ 32 ] and Sussman and Fatemi [ 44 ] proposed an additional constraint to 

be applied during the re-distancing step to help ensure the interface (φ = 0) does not move. It 

has been found in the present work that imposing this constraint also improves the convergence 

of the re-distancing step.  The essence of the constraint is to preserve the original volume (i.e., 

mass) of each phase during the re-distance step. 

     The re-distancing step of the LS method is of vital importance to the coalescence control 

algorithm. It is necessary that the LS distance field contours return to the proper step after the 

advection of the velocity field since the curvature of these contours is used in identifying 

coalescence events. 

CHAPTER 3 ALGORITHM DEVELOPMENT 

      The previous work of Sanada et al. [ 2 ] shows that it was possible to simulate the thin 

liquid film viscosity effects in a 2D simulation without any grid dependencies. It was 

demonstrated that the film did not have time to drain before the bubble was repelled/bounced 

as observed by Kirkpatrick and Lockett [ 16 ]. This simulation used a resolution of 150 x 150 

elements which meant that there were 20 elements per bubble radius. The bubble diameter 

ranged from 1.6-2.0 mm. The simulation domain used in computation used symmetry so that 
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the calculations were only performed on half of the domain. If the largest bubble diameter were 

used and the same resolution was applied to a small 3D domain of 20mm x 10mm x 10mm 

used in PHASTA simulations, the resolution would be 400 x 200 x 200 (16M elements) which 

is much finer than the finest resolution used in PHASTA of 160 x 80 x 80 (1M elements) for 

a 5 mm diameter bubble. This much finer mesh for the small 3D domain is feasible but this 

domain contains only two bubbles.  

      The goal is to prevent coalescence or model the coalescence dynamics for hundreds of 

bubbles. If the two bubble domain is taken as a standard, it would need to be 50 times larger 

to allow for 100 bubbles resulting in a 1000mm x 10mm x 10mm domain. Using the resolution 

from Sanada et al., this would create a resolution of 20000 x 200 x 200 (800M elements) for 

one hundred 5 mm diameter bubbles. The computational cost would be much too high for a 

simulation of this size. This means another method is required to provide the physics of film 

drainage in the simulation of bubble coalescence.  

 

3.1 Repulsive Force 

       The method chosen to allow the use of a rougher resolution was to apply a force acting in 

opposite directions to each bubble interface in order to prevent the coalescence event or slow 

the process. This force represents the liquid film drainage process between the approaching 

bubbles which cannot be modeled directly due to the high resolution requirements. Since 

multiple factors affect the liquid film drainage (e.g. velocity, bubble approach angle) it is 

necessary that this force will allow for coalescence events under certain flow conditions. 
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To apply this force, it was decided to locally increase the surface tension within a 

designated area of each bubble. The increase in surface tension was chosen because it was the 

most computationally affordable method to prevent coalescence compared with the other 

options (e.g. artificially increasing viscosity between the bubbles which requires much larger 

mesh resolution). Since the surface tension is not adjusted uniformly, this results in net force 

acting on each bubble in the direction opposite to the coalescence path (See Figure 6, Figure 

7, and Figure 8). 

 

 

 

Figure 6: Schematic of how the coalescence control is implemented and restricts coalescence. 
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Figure 7: An initial time step with the coalescence control application volume shown as the white circle and the black 

circles as the bubble interfaces 

 

 

 

 

Figure 8: An later time step after surface tension changed with the coalescence control application volume shown as the 

white circle and the black circles as the bubble interfaces 

 

 

 

The surface tension was changed within a sphere centered at the event location found by 

an identification process which is described later. The sphere uses a radius of five times the 

level set interface half thickness. The shape of a sphere was chosen to automatically change 
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the magnitude of the force based on the distance between the bubbles. This scales the force 

acting on the bubbles based on the surface area that is subtended by the sphere. This seems to 

leave the least amount of impact on the accuracy of the simulation since the properties values 

are only changed in a local area around the event. Also, the change only lasts as long as the 

bubbles are close to one another. 

This force method allows for more cost efficient computation but comes with other 

drawbacks. One issue is that the force may not accurately represent the distance in which 

coalescence event take place. The initial thin liquid film distance is estimated to be 0.1 mm by 

Kirkpatrick and Lockett [ 16 ] and the final film thickness is estimated to be 1 𝑥 10−5 𝑚𝑚 by 

Kim and Lee [ 11 ]. In comparison to the estimated initial thickness, five times the interface 

half thickness depends on the resolution and is only half the film distance. For a moderate 

resolution and 5 mm diameter bubble, it is equal to 4.5 mm which is much larger than 0.1 mm. 

This means that the slowing down of a coalescence event would begin much sooner than the 

physical phenomena that is being modeled. Some work has been completed in adjusting the 

algorithm to decrease this distance (See Section 5.2). Another problem with the model is that 

the algorithm adjusts the shape of the bubbles. When the surface tension is increased in the 

sphere, the bubble interfaces within the sphere begin to flatten. This may be physical when the 

liquid film is very small, however this begins to occur once the bubbles enter the force 

application volume. This can be an issue if it is assumed that the bubbles in the simulation are 

perfectly spherical and the purpose of the simulation is to observe the effects of spherical 

bubbles on the multi-phase flow.  
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3.2 Location Identification 

     One of the importance aspects of this algorithm is to identify the location of a coalescence 

event. It is necessary to know the event location to be able to prevent or simulate the 

coalescence properly. One simple method to find the location is to use the distance field 

contours generated by the LS method in the PHASTA code. By using the distance field 

contours, it makes it possible to identify not just one coalescence event but multiple events 

simultaneously. However, it is beneficial to initially consider one coalescence event because it 

explains some of the basic principles necessary to detect multiple coalescence events at one 

time. 

 

3.2.1 Single Event 

     Since PHASTA uses the LS method to identify the bubble interface, there are level-set 

contours throughout the whole domain. In the case of more than one bubble, multiple sets of 

contours are spread throughout the whole domain and they will intersect with one another (See 

Figure 9). At these intersections, the curvature of the contours drastically changes in magnitude 

and sign. By choosing some of the different contours close to the bubble interface and limiting 

curvature values, it is possible to record the coordinates of the intersection points in an array. 

They are also tagged to identify the element positions in the array and that a set of coordinates 

has been found. These coordinates roughly fill the area between two concentric circles centered 

in between the approaching bubbles (See Figure 10). 
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Figure 9: The distance field of the bubbles shown as the white contour lines with the black circles representing the bubble 

interface 

 

 

 

 

Figure 10: Location of high curvature where coordinates are used to generate average coalescence event coordinates 
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     The current algorithm uses jumps in curvature between the first and sixth distance field 

contour. The limiting curvature values used to determine the coordinates has been determined 

empirically. A set of simple two bubble simulations, similar to the setup above, were used (See 

Figure 10). Each simulation in the set used a different resolution with 5 mm bubbles. The 

curvature values between the first and sixth distance field contour were recorded. A curvature 

value close to each jump in curvature was then taken and plotted against the number of 

elements across the bubble diameter (See Figure 11). A linear fit was then used to obtain an 

equation to calculate the limiting curvature value. As a buffer, this limiting curvature value 

was also multiplied by 1.45 to make sure intersecting contour coordinates were the only points 

tagged. 

 

 

 

Figure 11: Plot of chosen curvature values plotted against the number of elements across a 5 mm bubble diameter. A linear 

fit was applied with the resulting equation and square of the correlation coefficient. 
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     Since it is possible to run PHASTA in parallel, multiple processors will contain an array 

with the recorded coordinates. These coordinate arrays from each processor are consolidated 

into three separate arrays distinguished by axis direction. The tag array from each processor is 

also consolidated into a single array. Each element of the coordinate arrays are summed and 

averaged by using the summation of the elements in the tag array. The average coordinates are 

the center coordinates for the two concentric circles generated by the intersecting contours. 

Since it is assumed there is only one coalescence event, the center coordinates identify the 

location of the event and can be used as the midpoint between the two approaching bubbles. A 

summary of the process can be seen in the following block diagram (See Figure 12). 

 

 

 

Figure 12: Summary of process to identify a coalescence event and calculate the average coordinates for the event. 

Step 1: Check curvature to identify coordinates and tag array
location

Step 2: Consolidate each processor coordinate array into the proper
axis array or tag array

Step 3: Sum the elements of each axis array and the elements of the
tag array to get 3 total coordinate values and 1 tag value

Step 4: Calculate the average coordinates for each axis by dividing
the 3 total coordinate values by the tag value
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3.2.2 Multiple Events 

      The previously described method works in the case of just one coalescence event but fails 

to identify multiple events occurring simultaneously. To identify more than one location at a 

time, an extension of the previously described method is required. A summary of the following 

process can be seen in the block diagram of Figure 13. To determine if there are multiple events 

occurring simultaneously, the average vector distance from the average coordinates to the 

coalescence events coordinates is calculated. If this distance is larger than the contour diameter 

distance, then it signifies there are multiple coalescence events in the domain.  

      If it has been determined that multiple events are occurring simultaneously, it is necessary 

to sort and tag the coalescence events specific to each event. For multiple coalescence events, 

the average coordinates found from all of the intersecting contour coordinates is located at a 

point between all of the different coalescence events. This location is not necessarily centered 

between all the events because the averaging process used in steps 3 and 4 do not use any 

weights based on the number of coordinates recorded from each event. By knowing this 

location and the coordinates from each of the coalescence events, it possible to generate vectors 

that start at this averaged location and extend to each coalescence event coordinate. 

      To identify each coalescence event separately, two different calculated criteria are used to 

consolidate the coordinates to their proper coalescence event. The first criteria used is the 

distance of each vector originating from the averaged location and the coalescence event 

coordinates which was previously calculated. For each coalescence event, the vector with the 

largest magnitude is found. For a coordinate to be considered part of the specific event 

belonging to the maximum length vector, it must be located within a distance equal to or less 



www.manaraa.com

 

23 

than the diameter of the farthest chosen level set contour for event identification. The distance 

between an event coordinate and the coordinate of the maximum length vector can be 

calculated by using vector addition and then calculating the magnitude of the resulting vector. 

If the resulting vector is less than or equal to the diameter of the farthest chosen contour for 

the event identification, then there is a high probability that the coordinate belongs to the 

specific coalescence event. 

 

 

 

Figure 13: Summary of process to find the average coordinates for each specific coalescence event during multiple 

coalescence events. 

Step 5: Check for multiple coalescence events using average vector distance

Step 6: Find the maximum length vector

Step 7: Calculate the angle between the maximum length vector and every other
vector

Step 8: Calculate the maximum possible angle for the different arrangements

Step 9: Use the vector distance criteria and maximum angle critieria to sort and
tag the event coordinates

Step 10: Use the single event averaging process for each sorted event

Step 11: Iteratively repeat until all coordinates tagged or the maximum estimated
coalescence event is exceeded
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      Since it is not possible to assuredly determine that a coordinate belongs to a specific 

coalescence event using the vector comparison, the angle between each vector and the 

maximum length vector for a specific coalescence event is used as the second criteria. By using 

the farthest chosen contour diameter from which coordinates are tagged, it is possible to 

calculate the maximum angle that would exist between the longest vector for a specific 

coalescence event and another vector resulting in a triangle with the contour diameter and 

maximum length vector. A geometric representation of this scenario can be seen in Figure 14.  

 

 

 

 

Figure 14: Triangle formed by three vectors during multi-event coalescence identification. 

 

 

 

Since the average location is not centered between all the coalescence events, there are three 

separate arrangements of which side of the above triangle represents the maximum length 

vector, the contour diameter, and the other vector finishing the triangle. The law of cosines is 
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used to determine the maximum angle at which the vectors can be positioned for each 

arrangement (See Eqs. ( 10 ), ( 17 )). 

 

Arrangement 1: Sides c and a are known 

     The first arrangement occurs when side c represents the maximum length vector and side a 

represents the contour diameter. The form of the law of cosines used for this arrangement is 

the following: 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 ∗ cos(𝛼)   ( 10 ) 

Since the largest possible value of 𝛼 is needed as a criteria, the length of 𝑏 must be determined 

when 𝛼 is maximized. To do this, Equation ( 10 ) is solved for 𝛼 and the first derivative of 𝛼 

is taken with respect to 𝑏 (See Eqs. ( 11 ) and ( 12 )). 

α = cos−1 (
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
)   ( 11 ) 

𝑑𝛼

𝑑𝑏
= −

1

√1 − (
𝑏2 − 𝑐2 + 𝑎2

2𝑏2𝑐
)

2

(
𝑏2 − 𝑐2 + 𝑎2

2𝑏2𝑐
) 

  ( 12 ) 

In order to maximize 𝛼, 
𝑑𝛼

𝑑𝑏
 is set equal to zero. From Equation ( 12 ), there are two possibilities 

that would make 
𝑑𝛼

𝑑𝑏
 equal to zero: 

−
1

√1 − (
𝑏2 − 𝑐2 + 𝑎2

2𝑏2𝑐
)

2

= 0 

  ( 13 ) 
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(
𝑏2 − 𝑐2 + 𝑎2

2𝑏2𝑐
) = 0   ( 14 ) 

   For Equation 4 to be true, 𝑏 must be equal to infinity. This does not make sense for a finite 

triangle which means Equation 5 must be used. This equation is solved for 𝑏 to calculate the 

length of 𝑏 to maximize 𝛼: 

𝑏 = √𝑐2 − 𝑎2   ( 15 ) 

Equation 6 is just a modified form of the Pythagorean Theorem which means that 𝛼 is 

maximized when vectors 𝑎, 𝑏, and 𝑐 form a right triangle. Since the vectors form a right 

triangle, 𝛼 can be calculated using a basic trigonometric function: 

𝛼 = cos−1 (
𝑏

𝑐
)   ( 16 ) 

 

Arrangement 2: Sides c and b are known 

     Within this arrangement, there are two possible setups. The first occurs when the maximum 

length vector is still acting as 𝑐 but the farthest chosen contour diameter is represented by side 

𝑏. For this arrangement, the angle 𝛽 is maximized instead of the angle 𝛼. For this arrangement, 

the following form of the law of cosines is used: 

𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 ∗ cos(𝛽)   ( 17 ) 

The same process is followed as in Arrangement 1 but 
𝑑𝛽

𝑑𝑎
 is found in order to maximize 𝛽. 

When calculated, you get a function of the same form as Equation 3. Here 
𝑑𝛽

𝑑𝑎
 is set equal to 

zero which results in the same type of possibilities as discussed in Arrangement 1. Using the 

second possibility, the length of side 𝑎 is determined: 
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𝑎 = √𝑐2 − 𝑏2   ( 18 ) 

Again, this equation is an alternate form of the Pythagorean Theorem. This means that simple 

trigonometric functions can be used to solve for the maximum of angle 𝛽: 

𝛽 = sin−1 (
𝑏

𝑐
)   ( 19 ) 

      The second setup of this arrangement is where the contour diameter acts as side 𝑐 and the 

maximum length vector acts as side 𝑏. In this instance, the average coordinate may be located 

within the sixth contour of one of the bubbles. This represents a situation where this 

coalescence event generates many more event coordinates than other events. In the extreme, it 

is possible that the average coordinates could be at the center of the coalescence event. 

However, it is assumed that the number of event coordinates does not significantly outweigh 

other events so it is assumed that the maximum angle of 𝛾 occurs when the length of a line 

drawn from point 𝐶 in Figure 14 and perpendicular to side 𝑐 is equal to the bubble radius plus 

one contour distance (See Figure 15). 

     With this assumption, it is not possible to assume that the triangle formed is a right triangle. 

The line drawn between point 𝐶 and perpendicular to side 𝑐 can be used since this forms two 

right triangles. This means that the angle 𝛾 and the side 𝑐 can be broken into two pieces: 

𝛾 = 𝜃 + 𝜙   ( 20 ) 

𝑐 = 𝑙 + 𝑚   ( 21 ) 

This means that 𝜃 and 𝜙 can be found by the following equations: 

𝜃 = cos−1 (
𝑑

𝑏
)   ( 22 ) 
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𝑙 = 𝑏 ∗ sin (𝜃)   ( 23 ) 

𝑚 = 𝑐 − 𝑙   ( 24 ) 

𝜙 = tan−1 (
𝑚

𝑑
)   ( 25 ) 

The angle 𝛾 can then be used as the maximum angle between the maximum length vector and 

any other vector. 

 

 

 

Figure 15: Schematic of triangle to calculate the angle gamma when the sides b and c are known. 

 

 

 

     Now that the maximum angles can be calculated, it is necessary to calculate the angles 

between the maximum length vector and every other vector in order to compare the angles as 

the second criteria. To calculate the angles, the definition of the dot product between two 

vectors is used: 

𝜓𝑖 = cos−1 (
𝑐 ∙ 𝑣𝑖

‖𝑐‖‖𝑣𝑖‖
)   ( 26 ) 
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where 𝑐 is the largest length vector, 𝑣𝑖 is any other vector, and 𝜓𝑖 is the angle between the 

largest length vector and any other vector. 

     Once each of the values for the criteria have been calculated, they can be used to sort and 

tag the event coordinates specific to each coalescence event. This process will occur iteratively 

until all event coordinates have been tagged or the maximum number of estimated coalescence 

events has been exceeded. Once all the iterations have completed, the same averaging process 

used for a single coalescence event is used for each tag separately. This results in an array of 

center coordinates for each set of concentric circles generated by the different coalescence 

events and therefore identifies each event separately.  

       

3.3 Drainage Time 

     Once the coalescence event has been identified and the force is implemented, it is necessary 

to track the amount of time the force has been active. The tracked time can then be compared 

to a coalescence time model [ 7 ] that estimates the total coalescence time. Once the tracked 

time has exceeded the estimated total coalescence time, the force is removed, signifying the 

liquid film has had sufficient time to drain, and the bubbles are allowed to coalesce.  

     The drainage time uses a model that is based on the equivalent bubble radii (𝑟𝑖𝑗), the density 

of the liquid (𝜌𝑙), the surface tension (𝜎), and the initial and final film thickness (ℎ𝑜 , ℎ𝑓): 

𝑡𝑖𝑗 = √
𝑟𝑖𝑗

3𝜌𝑙

16𝜎
ln (

ℎ𝑜

ℎ𝑓
)   ( 27 ) 

The equivalent radius is found by the following equation: 
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𝑟𝑖𝑗 =
1

2
(

1

𝑟𝑏𝑖
+

1

𝑟𝑏𝑗
)

−1

   ( 28 ) 

where the indices 𝑖, 𝑗 represent different bubbles. The initial film thickness is estimated as 1 ∗

10−4 𝑚 by Kirkpatrick and Lockett [ 16 ] and the final film thickness is usually taken to be 

1 ∗ 10−8 𝑚 [ 11 ]. 

      To track the coalescence events, it is necessary to  develop several logic loops in order to: 

identify new coalescence events, keep track of the continuing events that have and have not 

exceeded the model time limit, and determining when events have ended whether through 

coalescence or the bubbles moving away from (bouncing off) one another. Since each event is 

not assigned the same event number after each iteration, the distance between the average 

coordinates from the previous iteration and the current iteration are used to identify which 

events are the same. The distance between the average coordinates will always be quite small. 

The default values for the average coordinates are used to help identify when any new and 

ending events occur. 

CHAPTER 4 SIMULATIONS 

      In order to test the functionality and capability of the algorithm and its cost, three different 

types of simulations were used and performed. Each of these simulations was performed using 

the PHASTA code with the coalescence control algorithm added in as a functional capability.  
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4.1 Two Bubble Coalescence Prevention 

     The first simulation consists of how the algorithm handles when there is only one 

coalescence event occurring in the domain. The time tracking portion of the algorithm was not 

tested in this simulation. The domain size was 40 mm x 20 mm x 20 mm with the x-y planes 

acting as walls. There were three bubbles placed in the domain: (i,ii) two bubbles with a 5 mm 

diameter and (iii) a third with a 6 mm diameter. The bubbles were placed at varied distances in 

the x-direction along the center line between two parallel plates. Gravity was used to provide 

a buoyance force on the bubbles to cause them to flow while a pressure gradient was applied 

to the liquid to keep it stationary within the domain. A finite element mesh containing 2M 

hexahedral elements. This means that the 5 mm diameter bubbles were resolved with at least 

25 elements across its diameter. For more information on the domain and simulation 

parameters, see Figure 16 and Table 1. 

     The simulation was used for two tests. The first test was performed without using the 

coalescence control algorithm. The second test was performed with the coalescence control 

active. To analyze how the algorithm handles a single event, only the interaction between the 

two 5 mm diameter bubbles is considered. 

     In the first test, a coalescence event was observed in iteration 870 between the two 5 mm 

diameter bubbles (See Figure 17 Top). When the second test was performed, the coalescence 

control algorithm identified the event and locally adjusted the surface tension around the center 

of the event coordinates. Comparing the visualization of the same simulation time as in the 

first test, the coalescence of the two 5 mm bubbles was prevented (See Figure 17 Bottom). 
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Figure 16: Initial setup to test the algorithm for a single coalescence event identification and prevention. 

 

Table 1: Overview of simulation parameters for the single coalescence prevention simulation. 

Parameter   

Liquid water 

Gas air 

Pressure, Pa 0 

Temperature, °C N/A (0) 

Liquid Density, kg/m3 997.17 

Gas Density, kg/m3 1.161 

Liquid viscosity, kg/m-s 2.67E-03 

Gas viscosity, kg/m-s 1.86E-02 

Body Force, m/s² 0.5 

Body Force Pressure Gradient, Pa/m 498.585 

 

 

 

     As for computational cost, the simulation without the coalescence control finished 710 

iterations in about 2 hours. When the coalescence control was activated, the simulation finished 

710 iteration in about 2.2 hours. This shows a 10% increase in cost of running with the 
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coalescence control. Even though the coalescence control increases the computational cost, 

this increase is cost is manageable and willing trade off to the resolution required for 

coalescence viscosity effects to be observed. 

 

   

 

(a) 

 

(b) 

 

(c) 

Figure 17: Visualization of the simulations for the single coalescence events at iterations: (a) 20, (b) 400, and (c) 870. Top: 

The simulation performed without the coalescence control algorithm. In iteration 870, the 5 mm bubbles have begun to 

coalesce. Bottom: The simulation performed with the coalescence control algorithm. In iteration 870, the coalescence event 

has been prevented. 

 

 

4.2 Multi-Bubble Coalescence Prevention 

     In order to test the coalescence control algorithm’s ability to handle multiple events as well 

as turbulence, a large simulation was created. This simulation is based on one reported on by 

Bolotnov and Podowski in 2012 [ 42 ]. The simulation consists of a bubbly gas flow in 

turbulent flow conditions with an equivalent 𝑅𝑒 ≈ 12,000. The flow is between two parallel 

places and a total of 32 bubbles were placed randomly throughout the domain. The mesh 

consisted of about 10 million hexahedral elements resulting in approximately 18 elements 
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across the diameter of the bubbles. For more information on the simulation parameters and the 

domain, see Figure 18 and Table 2. 

 

 

 

Figure 18: Overview of the simulation domain dimensions and axis orientation. The shaded planes represent walls. 

 

 

      The described simulation was tested twice: one without using the coalescence control 

algorithm and one with the coalescence control algorithm active. The starting point for these 

tests started at iteration 7800 (See Figure 19). To determine if bubble coalescence events 

have occurred, later iterations were chosen and the number of bubbles was counted. The 

iterations that were chosen were matched based on time within the simulation. The times 
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Table 2: Overview of simulation parameters for the multi-bubble coalescence prevention simulation. 

Parameter   

Pressure, bar 10 

Liquid water 

Gas air 

Temperature, °C 27 

Liquid Density, kg/m3 996.5 

Gas Density, kg/m3 11.636 

Liquid viscosity, kg/m-s 8.514∙10-4 

Gas viscosity, kg/m-s 1.858∙10-5 

 

 

Figure 19: Initial setup at iteration 7800 of the bubbly flow in turbulent conditions. There are 32 bubbles randomly 

placed throughout the domain. 

 

 

 

chosen represent two, four, and five full flow-throughs of the domain where a single flow-

through means a bubble has moved through the domain to return to its initial position on the 

x-axis. For the test when the coalescence control was not used, it can be seen in iteration 15600, 

only 25 bubbles remained in the domain. Then in iteration 23800, only 22 bubbles remained, 
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and in iteration 27800, only 19 bubbles remained. (See Figure 20 Top). This signifies that there 

were multiple coalescence events after only two flow-throughs. More events continued to 

follow in subsequent flow-throughs. For the second test using the coalescence control 

algorithm, in iterations 15000, 22600, and 26800, 32 bubbles remained in the domain instead 

of 25, 22, or 19 bubbles.  (See Figure 20 Bottom). This shows that 13 coalescence events that 

occurred in the first test were prevented by the coalescence control algorithm. This means that 

the algorithm is performing properly for turbulent conditions with multiple bubbles. The 

computational cost for these simulations was also analyzed. The simulation without the 

coalescence control finished 2150 iterations in 3 hours. When the coalescence control was 

activated, the simulation finished 2150 iterations in 3.8 hours. This shows a 25% increase in 

cost of running with the coalescence control. This computational cost is higher than the single 

coalescence event but is to be an expected increase. However, even this increase is cost is more 

desirable over the resolution required for coalescence viscosity effects to be observed. 
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(a) 

 

(b) 

 

(c) 

Figure 20: Visualization of both 32 bubble simulation at multiple iterations. Top: No coalescence control, Iterations (a) 

15600, (b) 23800, (c) 27800. Bottom: Coalescence control active, Iterations (a) 15000, (b) 22600, (c) 26800. 
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4.3 Coalescence Time Tracking 

     The third test simulation was designed to test the coalescence control algorithm’s time 

tracking model. This simulation design consists of a single bubble below a free surface of gas 

placed at the top of the domain. The domain size was 20 mm x 35 mm x 20 mm. The bubble 

diameter was 5 mm and the center point of the bubble was placed 20 mm below the free surface 

(See Figure 21). Gravity was used to provide a buoyance force to force the bubble to approach 

the free surface. A wall was placed on the top and bottom of the domain normal to the gravity 

and buoyance force. The mesh was made of 0.9M hexahedral elements resulting in 

approximately 20 elements across the diameter of the bubble. For more information on 

simulation parameters, see Table 3. 

 

 
Table 3: Overview of simulation parameters for the time tracking tests. 

Parameter   

Liquid water 

Gas air 

Pressure, Pa 0 

Temperature, °C N/A (0) 

Liquid Density, kg/m3 997.17 

Gas Density, kg/m3 1.161 

Liquid viscosity, kg/m-s 2.67E-03 

Gas viscosity, kg/m-s 1.86E-02 

Body Force, m/s² 1 

Body Force Pressure Gradient, Pa/m 997.17 

 

 

 

      Two simulations were performed for this test (See Figure 22). Both tests were performed 

with the coalescence control portion of the code active. However, in the second simulation, the 
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time tracking portion of the coalescence control was active. The first test was performed 

without using the time tracking portion of the code. It can be seen in iteration 800 that the force 

is implemented. Later, in iteration 1150, the simulation shows that the coalescence event has  

 

 

 

Figure 21: Initial setup for the bubble rising towards a free surface. The simulation was used to test the time tracking 

portion of the algorithm. 

 

 

 

been prevented (See Figure 22 Top). For the test when the time tracking portion of the code 

was active, it can be seen that the force is implemented in the same iteration (800) as the first 

test. However, by comparing iteration 920 between the simulations, it can be seen that the force 

is removed in the second simulation. By iteration 1150, the bubble and free surface have 

coalesced in the second simulation (See Figure 22 Bottom). The second simulation 

demonstrates that the time tracking portion of the code is properly removing the application 

volume after the maximum coalescence time has been exceeded. 
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(a) 

 

(b) 

 

(c) 

Figure 22: Visualization of both simulations at iterations (a) 800, (b) 920, and (c) 1150. Top: Simulation run without using 

the time tracking portion of the algorithm. Bottom: Simulation that uses the time tracking portion of the algorithm. 
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     A new capability was used in these simulations so the computational cost changed from the 

previous simulations. Without the time tracking algorithm active, the simulation finished 1500 

iterations in 2.33 hours. When the tracking algorithm was active, the simulation finished 1500 

iterations in 2.36 hours. This signifies only a 1% increase in the running cost of adding the 

time tracking portion of the algorithm. This running cost increase is insignificant to the cost of 

running the rest of the coalescence control algorithm and is therefore an easy tradeoff.  

CHAPTER 5 VERIFICATION AND VALIDATION 

5.1 Mesh Study 

     To test whether the algorithm was calculating the average coordinates correctly irrespective 

of the mesh, a simple domain of 20mm x 15mm x 15mm was created with two 5 mm diameter 

bubbles (See Figure 23). Only gravity in the negative x-direction was used to generate a 

buoyancy force to move the bubbles. The distance between the bubble centers was small 

enough to activate the coalescence control algorithm. Several different cases were run where 

the mesh resolution was increased from 20 elements per diameter (288K discrete elements and 

1.8M parasolid elements) to 40 elements across diameter (2.3M discrete elements and 13.3M 

parasolid elements). The distance between the bubble centers was kept constant. The value of 

the interface half-thickness input into PHASTA was also unchanged with the increasing 

resolution. Two separate simulations were created for each case: one mesh contained discrete 

hexagonal elements while the other contained adaptive tetrahedral elements. The same 

parameters were used for both simulations (See Table 4).  
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Figure 23: Initial setup of the simulation used in the mesh study. The domain contains two 5 mm bubble. 

 

 

 
Table 4: Overview of simulation parameters for both mesh types. 

Parameter   

Liquid water 

Gas air 

Pressure, Pa 0 

Temperature, °C N/A (0) 

Liquid Density, kg/m3 997.17 

Gas Density, kg/m3 1.161 

Liquid viscosity, kg/m-s 2.67E-03 

Gas viscosity, kg/m-s 1.86E-02 

Body Force, m/s² 0.5 

Body Force Pressure Gradient, Pa/m 498.585 

 

 

 

     The reason to use two different mesh types comes from the fact that each mesh type is used 

for different situations. The discrete mesh uses hexagonal elements within a structured grid 

(See Figure 24 (a)). This grid is simple and efficient grid but unable to represent shapes other 

than a cube. On the other hand, a parasolid mesh uses tetrahedral elements in an unstructured 

mesh (See Figure 24 (b)). This allows non-cube shapes to be simulated but may result in more 
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complex and less efficient grid. The coalescence control algorithm will be used in both meshes 

and therefore a mesh study must be performed using both meshes. 

 

5.1.1 Discrete Mesh 

 

     For this test, the interface half-thickness was kept at 4.5 ∗ 10−4 which is equal to 1.8 times 

a 20 point per diameter resolution. The bubbles in the diameter were setup such that the 

midpoint between them was set at (1.0E-2, 7.5E-3, 7.5E-3). Each simulation was run for five 

iterations and the coalescence event coordinates reported were taken from the third iteration. 

 

 

 

(a) 

 

(b) 

Figure 24: Visualization of a (a) discrete mesh and a (b) parasolid mesh. 
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The third iteration was chosen to allow the algorithm to perform a couple of iterations while 

not waiting too long such that the bubbles moved sufficiently to drastically move the 

coalescence event location.  These coalescence event coordinates can be seen in Table 5. Each 

set of coordinates was compared to the exact midpoint value and the normalized based on the 

distance between the center points of the bubble (See Table 6). 

 

 
Table 5: Contains the average coordinates for different discrete domain resolutions. It also contains the exact geometric 

coordinates and distance between bubble centers. 

Reported Center Points for Coalescence Events in Discrete Simulation 

3rd Iteration Coordinates 
Exact 

Bubble Center 

Distance   20 Pts. 25 Pts 30 Pts. 35 Pts. 40 Pts. 

X Coord 1.01E-02 1.01E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 9.00E-03 

Y Coord 7.49E-03 8.08E-03 8.32E-03 7.89E-03 8.21E-03 7.50E-03 9.00E-03 

Z Coord 7.49E-03 7.11E-03 6.85E-03 7.07E-03 7.38E-03 7.50E-03 9.00E-03 

 

 

 
Table 6: Contains the error between the reported coordinates and the exact geometric coordinates normalized by the 

distance between bubble centers. 

Percent Error Normalized by Distance between Bubble Centers 

  20 Pts. 25 Pts 30 Pts. 35 Pts. 40 Pts. 

X Coord 1.006611539 0.67252167 0.409646053 0.510499203 0.451368364 

Y Coord 0.081854474 6.452301016 9.107695555 4.34685935 7.86000409 

Z Coord 0.086528576 4.298314523 7.271514561 4.79368714 1.344575277 

 

 

 

     Among all the cases, the highest error was seen to be about 9%. The largest errors were also 

only seen for the y and z coordinates. A possible explanation for this result can be found when 

considering that the intersecting contours of the two bubbles are found in the y-z plane. It is 

possible that the concentration of points found around the intersecting contours was not evenly 
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distributed. This would cause a skew in the average y and z coordinates without affecting the 

x coordinate.  

     To determine whether the errors affect the outcome in later iterations, the 20 elements and 

40 elements across the 5 mm bubble diameter simulations were run longer. These simulations 

were performed for 500 iterations each. The 250th iteration was chosen for the 20 element 

resolution since the simulation matched the 500th iteration of the 40 element resolution. As 

expected for the 20 elements per diameter resolution, the coalescence event was prevented (See 

Figure 25 (a)). It can also be seen in Figure 25 (b) that the coalescence event was prevented in 

the 40 element resolution as well. This shows that the errors in the higher resolution are 

insufficient to cause the algorithm to work improperly. 

 

 

 

(a) 

 

(b) 

Figure 25: Visualization of the discrete mesh study for the 20 element and 40 element resolutions. Left: The 20 element 

resolution at iteration 250. Right: The 40 element resolution at iteration 500. 
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5.1.2 Parasolid Mesh 

 

     For this test, the interface half-thickness was kept at 3.0 × 10−4 which is equal to 1.8 times 

a 30 point per diameter resolution. The bubbles in the diameter were setup such that the 

midpoint between them was set at (1.0E-2, 0, 0). Again, each simulation was run for five 

iterations and the coalescence event coordinates reported were taken from the third iteration.  

These coalescence event coordinates can be seen in Table 7. Each set of coordinates was 

compared to the exact midpoint value and normalized based on the bubble center distance (See 

Table 8). 

 

 
Table 7: Contains the average coordinates for different parasolid domain resolutions. It also contains the exact geometric 

coordinates and distance between bubble centers. 

Reported Center Points for Coalescence Events (30 Pts. Eps.) 

3rd Iteration Coordinates 
Exact 

Bubble 

Center 

Distance   20 Pts. 25 Pts 30 Pts. 35 Pts. 40 Pts. 

X Coord 1.01E-02 1.00E-02 1.00E-02 1.01E-02 1.01E-02 1.00E-02 7.20E-03 

Y Coord 5.87E-05 4.23E-05 4.50E-05 3.08E-04 6.15E-04 0.00E+00 7.20E-03 

Z Coord 1.18E-05 -1.69E-08 -4.81E-05 7.92E-04 1.21E-03 0.00E+00 7.20E-03 

 

 

 
Table 8: Contains the error between the reported coordinates and the exact geometric coordinates normalized by the 

distance between bubble centers. 

Percent Error Normalized by Distance between Bubble Centers 

  20 Pts. 25 Pts 30 Pts. 35 Pts. 40 Pts. 

X Coord 1.342338337 0.390327151 0.554685182 0.934134495 0.843749435 

Y Coord 0.815865397 0.587218111 0.625412608 4.271283867 8.547559288 

Z Coord 0.163391908 0.000234887 0.667659593 11.00519116 16.77109136 
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     Among all the cases, the highest error was seen to be about 16%.  The largest error were 

only seen in the y and z coordinates. This result shows high accuracy with the expected results. 

The higher error in the y and z coordinates can be explained by the same reasoning in the 

discrete domain. The y and z average coordinates are generated from intersecting contours in 

the y-z plane. It is possible that the concentration of points found around the intersecting 

contours was not evenly distributed. This would cause a skew in the average y and z 

coordinates without affecting the x coordinate. 

      To determine whether the errors affect the outcome in later iterations, the same process 

was used as with the discrete mesh. The two simulations of 20 elements and 40 elements across 

the 5 mm bubble diameter were performed for 500 iterations each. Visualizations of each case 

was chosen based on matching time within the simulation (See Figure 26). For these two 

simulations, the interface half-thickness was not a proper match. However, for both 

simulations, the coalescence event was still prevented (See Figure 26). This shows that the 

errors due to a mismatched interface half-thickness are insufficient to make the algorithm work 

improperly.  

 

5.2 Minimum Liquid Film Thickness during Coalescence Control 

     As mentioned earlier, the initial distance estimated by Kickpatrick and Lockett [ 16 ] was 

0.1 𝑚𝑚. However, in our moderate resolution simulations, the initial distance is ten times the 

interface half-thickness which is equal to 4.5 mm. This value is much larger than desired and 

means the coalescence control process will start sooner than expected. To see if this distance 

could be reduced, a simple test was performed using the same simulation of the bubble rising 
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towards a free surface simulation (See Section 4.3). The same domain and simulation 

parameters were used (See Figure 21 and Table 3). 

 

 

 

(a) 

 

(b) 

Figure 26: Visualization of the parasolid mesh study for the 20 element and 40 element resolution. (a) The 20 element 

resolution at iteration 280. (b) The 40 element resolution at iteration 500. 

 

 

 

     In the original algorithm, the identification of a coalescence event starts once the sixth 

distance field contours begin to intersect (See Figure 9). This means that the application 

volume is implemented before the bubbles begin to enter the volume. However, to reduce the 

initial coalescence distance, there are two options: increase the resolution or change the 

distance field contour that activates coalescence control. Since the purpose of the coalescence 

control algorithm is to reduce the required resolution to prevent coalescence, changing the 

distance field contour was investigated. For this test, three simulations were performed: (i) 

using the third distance field contour, (ii) using the fourth distance field contour, and (iii) using 
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the original sixth distance. In order to be successful, the algorithm using closer contours still 

needed to prevent the coalescence event.  The time application portion of the algorithm was 

not used for these tests since it was necessary to prevent the coalescence event for the test. 

      The simulation setup and parameters were the same as those used in the coalescence time 

tracking section (See Section 4.3). For distance field contours closer than the fifth contour, the 

initial thickness for coalescence then becomes twice the distance to the specific contour. The 

distances for the three different tests can be seen in Table 9. When the original algorithm is 

used, it can be seen that the force is implemented in iteration 880 and the coalescence event 

was prevented by iteration 940 (See Figure 27 (a)). Changing the algorithm to activate at the 

fourth distance field contour was performed next. It can be seen in iteration 880 that the force 

is implemented. After the force had been implemented, it can be seen in iteration 940 that the 

coalescence event is prevented (See Figure 27 (b)). This means that the initial coalescence 

thickness could be reduced to 3.6 mm.  

 

 
Table 9: Initial liquid film thickness based on which distance field contour is used to activate the coalescence control 

algorithm. 

Initial Liquid Film Distance for Coalescence Events 

Identification Contour Initial Thickness (mm) 5th Contour Application Diameter 

3rd 2.7 4.5 

4th 3.6 4.5 

6th 4.5 4.5 

 

 

 

     Lastly, the algorithm was changed to activate on the third distance field contour. It can be 

seen in iteration 880 that the force activates to prevent the coalescence event. However, in 
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iteration 940, the timing of the force application and force strength was insufficient in 

preventing coalescence between the bubble and free surface (See Figure 27 (c)). This shows 

that the third distance field contour is insufficient in preventing coalescence events. Even 

though it was unable to prevent the coalescence in this simulation, it may still be possible to 

make this algorithm perform successfully. To do this, the magnitude of the force must be 

increased which results in adjusting the surface tension within the application volume. This 

means the distance could be reduced even further. This shows that even though the original 

algorithm cannot accurately represent the initial coalescence thickness, it is possible to reduce 

the distance by adjusting some of the parameters used in the algorithm. 

 

5.3 Initial and Final Bubble Diameter Distribution 

      The first validation test planned for the algorithm uses a large simulation of bubbles to look 

at the initial and final bubble diameter distribution. The simulation that will be used is the same 

one with bubbles in turbulent flow conditions used for the multi-bubble coalescence prevention 

(See Section 4.2). The same domain setup and simulation parameters were used (See Figure 

18 and Table 2). The distribution of bubble diameters and the initial and final void fractions 

will be compared to experimental results obtained by Colin et al. [ 20, 21 ]. Unlike when the 

multi-bubble coalescence prevention was tested, this simulation will be performed using the 

time tracking portion of the code as well. To match the experimental results obtained by Colin 

et al, the number of domain flow-throughs will be tracked to match the 2 m length used in the 

experimental apparatus. 
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(a) 

 

(b) 

 

(c) 

Figure 27: Visualization of liquid film thickness simulations at iteration 880 and 940. (a) Original algorithm. (b) Force 

activates at fourth contour. (c) Force activates at the third contour. 
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5.4 Bubble Approach Velocity Effect on Coalescence 

     The second validation test to be performed for the algorithm uses the single bubble rising 

towards a free surface. This simulation design was based off the same setup as the simulation 

in coalescence time tracking testing (See Section 4.3 and Figure 21). However, the simulation 

will be modified to match an experiment performed by Kirkpatrick and Lockett [ 16 ]. A 5 mm 

diameter bubble will be placed in a liquid domain below a free surface of gas at the top of the 

domain. Two different distances below the free surface will be used: 45 cm and 67 cm. Gravity 

will be used to provide a buoyance force to force the bubble to approach the free surface. A 

wall will be placed on the top and bottom of the domain normal to the gravity and buoyance 

force. The mesh is made of 8.5M or 12.6M hexahedral elements resulting in approximately 18 

elements across the diameter of the bubble. The Morton number (Mo) will be used to relate 

the adjusted simulation properties to the experimental properties (See Table 10). 

 

Table 10: Overview of experiment and simulation parameters for the bubble approach velocity effect on coalescence 

simulation. 

Parameter Experimental Simulation 

Liquid water water 

Gas air air 

Pressure, Pa 0 0 

Temperature, °C N/A (0) N/A (0) 

Liquid Density, kg/m3 997.17 997.17 

Gas Density, kg/m3 1.161 1.161 

Liquid viscosity, kg/m-s 2.67E-03 3.57E-03 

Gas viscosity, kg/m-s 1.86E-02 1.86E-02 

Body Force, m/s² 9.81 1 

Body Force Pressure Gradient, Pa/m 9782.24 997.17 

Surface Tension, N/m^2 7.28E-02 5.00E-02 
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      These tests will be performed with the time tracking portion of the code active. The 

results will be compared to the experimental results of Kirkpatrick and Lockett [ 16 ]. They 

observed that for bubble to free surface distances less than 61 cm the coalescence process 

was almost immediate. However, for distances larger than 61 cm, the coalescence process 

was much longer. By the time the bubble first makes contact with the free surface, it had 

gained sufficient speed to bounce off the free surface before coalescing. The coalescence 

time model taken from Prince and Blanch [ 7 ] did not take bubble approach velocity into 

account. However, testing this capability of the algorithm will help determine which 

simulations can be expected to provide proper physical results. 

CHAPTER 6 CONCLUSION 

6.1 Discussion 

      An algorithm was developed for the LS method that represents the effect of liquid film 

drainage during a coalescence event. Instead of using a high resolution grid to simulate the 

viscous drainage of the film, it prevents or slows the coalescence process by applying a force 

to both bubbles. The force is generated by locally changing the surface tension on a portion of 

each interface. This method was tested for single and multiple coalescence events in both 

laminar and turbulent flow regimes. In both cases, the algorithm successfully identified 

coalescence events and prevented the bubbles from coalescing. 

     A portion of the developed algorithm also tracks the amount of time a coalescence event 

has been active. This tracking time is then compared to a coalescence time model developed 

by Prince and Blanch [ 7 ]. The time tracking capability of the code was tested using a bubble 
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rising towards a free surface. The time tracking portion of the code successfully removed the 

locally modified surface tension allowing the bubble and free surface to coalesce.  

      We have observed some non-critical issues with the algorithm. One of these issues pertains 

to the deformation of the bubble interface. When the surface tension is changed, that portion 

of the bubble begins to flatten. In some situations, this is a physical process (e.g. representing 

the effect of the liquid film and the other interface on the bubble). However, the algorithm 

applies the changed surface tension before the liquid film is sufficiently thin to cause the 

flattening of the surface. Another issue is related to the initial film thickness that develops 

between the bubbles. With a moderate resolution, the initial thickness generated by the 

coalescence control algorithm is equal to 4.5 mm. This is much larger than the estimated 

thickness of 0.1 mm by Kirkpatrick and Lockett [ 16 ]. However, it has been demonstrated that 

the initial thickness can be reduced by adjusting parameters within the coalescence control 

algorithm. For multiple bubble simulations it is way more important to maintain the correct 

coalescence probability then to correctly resolve the thinnest film when the bubbles bounce off 

each other. Even with these minor issues, the presented coalescence control algorithm is the 

only feasible way to simulate multiple bubble behavior using LS approach at large scale.       

 

6.2 Future Work 

     Even though the coalescence control algorithm has been tested and is working properly, 

there is still some development and testing that needs to be done. One of the first issues with 

the algorithm that needs addressed is how the coalescence control algorithm interacts with 

periodic boundary conditions. In some early simulations, when a coalescence event would 
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travel through a periodic boundary, some of the area near the boundary retains the changed 

surface tension. The changed surface tension would then change the trajectory of some of the 

bubbles as they pass through the boundary. The problem is probably caused by the way the 

boundary values are updated after each iteration. More work would need to be done in finding 

out how the changed surface tension and boundary conditions interact. 

       Another possible change in the algorithm that can make it more robust is developing an 

analytical model to determine the expected curvature for intersecting contours. The current 

method was developed empirically by analyzing the curvature values for a simple two bubble 

simulation. Multiple cases were performed where each the resolution was adjusted between 

each case. There is a significant jump in magnitude for curvature values where the distance 

field contours intersect. A curvature value close to the curvature jumps was chosen for each 

resolution. These values were then plotted against the resolution and an equation was generated 

using a linear fit (See Figure 11). The algorithm then uses this equation and multiplies the 

resulting values by 1.45 for a buffer to generate the limiting curvature values. Developing the 

analytical analysis will make the identification of the coalescence event locations more 

accurate. 

     One aspect of the algorithm that can be explored even further is reducing the initial 

thickness of the coalescence event. Some work has already been done investigating this change 

(See Section 5.2). More effort can be devoted to this in optimizing which contour may be used 

and how the surface tension needs to be changed in order to prevent the coalescence event. 

Another option that could be used is adjusting the shape of the application volume. Instead of 

using a sphere, as the application volume, an ellipsoid or rectangular prism could be used. A 
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third option would be to change the surface tension profile across the application volume. 

Currently, the surface tension is adjusted uniformly throughout the application volume. Instead 

of using a constant profile, a quadratic or exponential profile could be used. This would then 

reduce effect on the coalescence process until both bubbles have moved farther into the 

application volume. This would then allow the force to be implemented within a volume 

between the bubbles that is much thinner than the spherical volume. Finally, time dependent 

coalescence control force can be introduced which will monitor the bubble velocities and 

change its value based on the bubble dynamics. Adjusting the algorithm in such a way would 

allow the method to simulate the coalescence process closer to what is observed 

experimentally. 

      Another option to make the algorithm simulate coalescence events with increased accuracy 

would be to update the coalescence time model used. The model developed by Prince and 

Blanch [ 7 ] was developed without considering the approach velocity of the bubbles. It was 

also not able to accurately predict coalescence rates when electrolyte solutions with salt 

concentrations past the transition concentration. The inability of the model to predict the rates 

was attributed to the effects of turbulence on surface mobility, the dynamics of bubble 

collisions, and the solute concentration at the gas-liquid interface of the coalescing bubbles. A 

better time model that includes these effects could be implemented to make the time tracking 

portion of the algorithm closer to experimentally observed values. 

      Currently, the algorithm requires the user to provide the bubble radius and the estimated 

number of coalescence events to perform properly. The algorithm uses the bubble radius for 

calculating the limiting curvature values. However, this is redundant information because 
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information on the bubble radius is built into the distance field. By investigating other parts of 

the PHASTA code, it would be possible to pull the radius from the distance field information 

instead of providing it manually. The estimated number of coalescence events is used to 

determine how many times to loop through the portion of the code that identifies multiple 

coalescence events. Manually providing this looping value is not the most computationally 

efficient. The algorithm could be smarter by developing a portion of the algorithm to adjust 

this looping value. It would simple to decrease the looping value if some of the average 

coordinate values are not changed from the default value for a specific number of time steps. 

It would require more work to add to the looping value if more coalescence events then being 

identified are occurring. However, these adjustments would make the algorithm more robust 

and easier to use. 

     For future development and study, the algorithm could be analyzed for simulations when 

the bubbles are no longer spherical. Since the algorithm uses the curvature of the distance field 

to identify coalescence events. However, bubbles are only spherical at very small flow 

velocities or very small diameters. This adjustment to the algorithm will be necessary if the 

study wants some bubbles to coalesce. These coalescence events will increase the bubble 

diameter which may make it large enough to start deforming. However, it is undesirable for 

the algorithm to identify a false coalescence event due to sharp curvature changes in the bubble 

shape. 

      Lastly, studies could be more accurately performed by analyzing the influence of bubble 

diameter on other aspects of the simulation. One example could be extended to a paper by 

Bolotnov [ 28 ]. The purpose of the paper was to study the influence of bubbles on turbulence 
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anisotropy. Several ensemble runs had to be performed in this study to limit the number of 

coalescence events in each and to provide good approximation for mean bubble diameter. If 

this same study were redone, the coalescence control algorithm could be used to prevent all 

coalescence events and thus perform it using single run with constant mean bubble diameter. 
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Appendix A 

Code added to e3ivar.f: 

c!.... Matt Talley's Bubble Coalescence Control 

      if (coalcon.eq.1) then 

!         if (update_coalcon.eq.1) then 

 

         xx = zero 

 

         do n  = 1,nenl 

              xx(:,1) = xx(:,1) + shpfun(:,n) * xl(:,n,1) 

              xx(:,2) = xx(:,2) + shpfun(:,n) * xl(:,n,2) 

              xx(:,3) = xx(:,3) + shpfun(:,n) * xl(:,n,3) 

         enddo 

 

         bubradius = coalbubrad + 6.0d0*(epsilon_ls_tmp) 

         bubradius2 = coalbubrad + epsilon_ls_tmp 

         PtsPerDiam = (2.0d0*coalbubrad) / (epsilon_ls_tmp/1.8d0) 

         Curvlim = -1.8083d2 * PtsPerDiam + 1.2873d3 

 

!         endif 

      endif 

 

c!      MaxCurv = 30.0   ! Max curvature allowed for survace tension force usage, 

Igor, April 2010 

        do i = 1, npro 

             weber(i) = Bo 

             Ccurv = divqi(i,idflow+1) 

 

c!.... Matt Talley's Bubble Coalescence Contorl 

           if (coalcon.eq.1) then 

!              if (update_coalcon.eq.1) then 

 

              if (((Sclr(i).ge.(1.0d0*epsilon_ls_tmp)).and. 

     &        (Sclr(i).le.(6.0d0*epsilon_ls_tmp))) 

     &        .and.((Ccurv.ge.(-1.45d0*Curvlim)).or. 

     &        (Ccurv.le.(1.45d0*Curvlim)))) then 

 

                 xarray(i) = xx(i,1) 

                 yarray(i) = xx(i,2) 

                 zarray(i) = xx(i,3) 

                 coordtag(i) = 1 

 

              endif 

 

!              endif ! update_coalcon 

              if (coaltimtrak.eq.1) then 

                 do k = 1, coalest 

                    do n = 1,nenl 

                       appvolume(i,n,k) = sqrt((xl(i,n,1) 

     &                                -avgxcoordold(k))**2 + 

     &                                (xl(i,n,2)-avgycoordold(k))**2 + 

     &                                (xl(i,n,3)-avgzcoordold(k))**2) 

 

                       if (appvolume(i,n,k).le.5.0d0*epsilon_ls_tmp) 

     &                 then 
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                          weber(i) = CoalInvSigma !Tension 

                       endif 

                    enddo 

                 enddo 

              else 

                 do k = 1, coalest 

                    if (coalcon_rem(k).eq.0) then 

                       do n = 1,nenl 

                          appvolume(i,n,k) = sqrt((xl(i,n,1) 

     &                                   -avgxcoordold(k))**2 + 

     &                                   (xl(i,n,2)-avgycoordold(k))**2 + 

     &                                   (xl(i,n,3)-avgzcoordold(k))**2) 

 

                          if (appvolume(i,n,k).le.5.0d0*epsilon_ls_tmp) 

     &                    then 

                             weber(i) = CoalInvSigma !Tension 

                          endif 

                       enddo 

                    endif 

                 enddo 

              endif ! coaltimtrak 

           endif ! coalcon 

 

 

Code added to itrdrv.f; 

c!....Matt Talley's Coalescence Contorl 

                      if (coalcon.eq.1) then 

                         if (coaltimtrak.eq.1) then 

 

                            do k = 1, coalest 

                               avgxcoordold(k) = avgxcoordf(k) 

                               avgycoordold(k) = avgycoordf(k) 

                               avgzcoordold(k) = avgzcoordf(k) 

 

                               if (avgxcoordold(k).gt.-1.0d3) then 

                                  if (myrank.eq.master) write(*,*) 'Coalescence', 

     &                            ' Event #: ', k 

                                  if (myrank.eq.master) write(*,*) 'x average', 

     &                            ' position:', avgxcoordold(k) 

                                  if (myrank.eq.master) write(*,*) 'y average', 

     &                            ' position:', avgycoordold(k) 

                                  if (myrank.eq.master) write(*,*) 'z average', 

     &                            ' position:', avgzcoordold(k) 

                               endif 

 

                            enddo ! k 

 

                         else 

 

                            itrtimestp = Delt(1) 

 

                            call CoalescAppTime (avgxcoordf, avgycoordf, 

     &                                          avgzcoordf, avgxcoordold2, 

     &                                          avgycoordold2, avgzcoordold2, 
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     &                                          app_time, itrtimestp) 

                         endif ! coaltimtrak 

                      endif ! coalcon 

Coalescence Event Identification Subroutine (coalesccon.f): 

         subroutine CoalescCon (xarray, yarray, zarray, coordtag, 

     &                          bubradius, bubradius2, avgxcoordf, 

     &                          avgycoordf, avgzcoordf) 

c 

c---------------------------------------------------------------------- 

c 

c This routine computes the center coordinates for coalescence events 

c during the simulation. 

c 

c Matt Talley, Winter 2014. 

c---------------------------------------------------------------------- 

c 

        use pvsQbi  ! brings in NABI 

        use stats   ! 

        use pointer_data  ! brings in the pointers for the blocked arrays 

        use local_mass 

        use spat_var_eps 

        use timedata  ! for iblkts usage 

c 

        include "common.h" 

        include "mpif.h" 

c 

        real*8 xarray(ibksiz), yarray(ibksiz), zarray(ibksiz) 

        integer coordtag(ibksiz) !Passed arrays from e3ivar 

 

        real*8 avgxcoord, avgycoord, avgzcoord, avgvectdist, !Coalescence control 

center pt 

     &         avgxcoordf(coalest), avgycoordf(coalest), 

     &         avgzcoordf(coalest) 

 

        real*8 totxcoordsum, totycoordsum, totzcoordsum, totvectdistsum, 

     &         totxcoordsum_mult(coalest), totycoordsum_mult(coalest), 

     &         totzcoordsum_mult(coalest) !Total sum of coordinates 

 

        integer totcoordcount, totvectnumbsum, 

     &          totcoordcount_mult(coalest) !Total number or coordinates 

 

        real*8 xcoordsum, ycoordsum, zcoordsum, vectdistsum, 

     &         xcoordsum_mult(coalest), ycoordsum_mult(coalest), 

     &         zcoordsum_mult(coalest) !Sum from each processor 

 

        integer totcoordnumb, vectnumbsum, diffnumbsum, 

     &          totcoordnumb_mult(coalest) !Total number from each processor 

 

        real*8 globalxcoord(ibksiz,nelblk), globalycoord(ibksiz,nelblk), 

     &         globalzcoord(ibksiz,nelblk), vectdist(ibksiz,nelblk), 

     &         xvectcoord(ibksiz,nelblk), yvectcoord(ibksiz,nelblk), 

     &         zvectcoord(ibksiz,nelblk), vectangle(ibksiz,nelblk), 

     &         vectdist2(ibksiz,nelblk) !Arrays from each processor 

 

        real*8 dotmax(ibksiz,nelblk), vectdist_max_tmp, vect_max_xcoord, 

     &         vect_max_ycoord, vect_max_zcoord, vect_max_xcoord_tmp, 
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     &         vect_max_ycoord_tmp, vect_max_zcoord_tmp 

 

        real*8 phi_max, bubradius, bubradius2, length_bside_tri, 

     &         angle1, angle2, hypot_len_1, hypot_len_2, 

     &         avgcoordfdist(coalest,coalest) 

 

        integer totcoordnumbarray(ibksiz,nelblk), 

     &          vectnumb(ibksiz,nelblk) 

 

        integer intone, vect_max_i, vect_max_iblk, 

     &          sign_of_vect_max_xcoord, sign_of_vect_max_ycoord, 

     &          sign_of_vect_max_zcoord, sign_of_vect_max_xcoord_tmp, 

     &          sign_of_vect_max_ycoord_tmp, sign_of_vect_max_zcoord_tmp 

 

        integer coalesc_tag(ibksiz,nelblk), consol_tag(coalest), 

     &          avgcoordf_erase_tag(coalest) 

 

c Initialize bubble coalecence control variables 

 

        xcoordsum = 0.0d0 !Matt T. 

        ycoordsum = 0.0d0 

        zcoordsum = 0.0d0 

        totcoordnumb = 0 

 

        globalxcoord(:,:) = zero 

        globalycoord(:,:) = zero 

        globalzcoord(:,:) = zero 

        totcoordnumbarray(:,:) = 0 

 

        avgxcoord = -1.0d3 

        avgycoord = -1.0d3 

        avgzcoord = -1.0d3 

 

        totxcoordsum = 0.0d0 

        totycoordsum = 0.0d0 

        totzcoordsum = 0.0d0 

        totcoordcount = 0 

 

        do iblk = 1, nelblk 

           iel    = lcblk(1,iblk) 

           npro   = lcblk(1,iblk+1) - iel 

 

c....!Storing the coordinates into each globalcoord array and counting how many 

c....!points are in each array. Then summing up each x, y, and z coordinate 

c....!array to get a sum of each x, y, and z coordinate 

 

           do i = 1, npro !Matt T. 

              globalxcoord(i,iblk) = xarray(i) 

              globalycoord(i,iblk) = yarray(i) 

              globalzcoord(i,iblk) = zarray(i) 

              totcoordnumbarray(i,iblk) = coordtag(i) 

           enddo 

 

           do m = 1, npro 

              xcoordsum = xcoordsum + globalxcoord(m,iblk) 

              ycoordsum = ycoordsum + globalycoord(m,iblk) 

              zcoordsum = zcoordsum + globalzcoord(m,iblk) 

              totcoordnumb = totcoordnumb + totcoordnumbarray(m,iblk) 

           enddo 
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        enddo 

 

         if (numpe.gt.1) then   !Matt T. 

            call MPI_ALLREDUCE(xcoordsum, totxcoordsum, 1, 

     &           MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr) 

            call MPI_ALLREDUCE(ycoordsum, totycoordsum, 1, 

     &           MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr) 

            call MPI_ALLREDUCE(zcoordsum, totzcoordsum, 1, 

     &           MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr) 

            call MPI_ALLREDUCE(totcoordnumb, totcoordcount, 1, 

     &           MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, ierr) 

 

            if (totcoordcount.gt.0) then 

               avgxcoord = totxcoordsum / DBLE(totcoordcount) !Matt T. 

               avgycoord = totycoordsum / DBLE(totcoordcount) 

               avgzcoord = totzcoordsum / DBLE(totcoordcount) 

            endif 

         else 

            if (totcoordnumb.gt.0) then 

               avgxcoord = xcoordsum / DBLE(totcoordnumb) !Matt T. 

               avgycoord = ycoordsum / DBLE(totcoordnumb) 

               avgzcoord = zcoordsum / DBLE(totcoordnumb) 

            endif 

         endif 

 

c....!Begin the check for multiple coalescence events 

 

         vectdistsum = 0.0d0 

         vectnumbsum = 0 

         vectdist(:,:) = 0.0d0 

         vectnumb(:,:) = 0 

 

         totvectdistsum = 0 

         avgvectdist = 0.0d0 

         totvectnumbsum = 0 

         intone = 1 

 

        do iblk = 1, nelblk 

           iel    = lcblk(1,iblk) 

           npro   = lcblk(1,iblk+1) - iel 

 

           do i = 1, npro 

              if (totcoordnumbarray(i,iblk).eq.intone) then 

 

                 vectdist(i,iblk) = sqrt((globalxcoord(i,iblk) – 

     &           avgxcoord)**2 + (globalycoord(i,iblk) - avgycoord)**2 

     &           + (globalzcoord(i,iblk) - avgzcoord)**2) 

 

                 vectnumb(i,iblk) = 1 

 

              endif 

           enddo ! i 

 

           do m = 1, npro 

              vectdistsum = vectdistsum + vectdist(m,iblk) 

              vectnumbsum = vectnumbsum + vectnumb(m,iblk) 

           enddo ! m 

        enddo 
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         if (numpe.gt.1) then 

            call MPI_ALLREDUCE(vectdistsum, totvectdistsum, 1, 

     &           MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr) 

            call MPI_ALLREDUCE(vectnumbsum, totvectnumbsum, 1, 

     &           MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, ierr) 

 

            if (totvectnumbsum.gt.0) then 

               avgvectdist = totvectdistsum / DBLE(totvectnumbsum) 

            endif 

         else 

            if (vectnumbsum.gt.0) then 

               avgvectdist = vectdistsum / DBLE(vectnumbsum) 

            endif 

         endif 

 

c....!Initialize new variables for the angle between vectors 

 

         coalesc_tag(:,:) = 0 

 

         xvectcoord(:,:) = 0.0d0 

         yvectcoord(:,:) = 0.0d0 

         zvectcoord(:,:) = 0.0d0 

 

         xcoordsum_mult(:) = 0.0d0 

         ycoordsum_mult(:) = 0.0d0 

         zcoordsum_mult(:) = 0.0d0 

         totcoordnumb_mult(:) = 0 

 

         totxcoordsum_mult(:) = 0.0d0 

         totycoordsum_mult(:) = 0.0d0 

         totzcoordsum_mult(:) = 0.0d0 

         totcoordcount_mult(:) = 0 

 

         if ((avgxcoord.gt.-1.0d3).and.(avgvectdist.ge.bubradius)) then 

 

            do iblk = 1, nelblk 

               iel    = lcblk(1,iblk) 

               npro   = lcblk(1,iblk+1) - iel 

 

               do i = 1, npro 

                  if (totcoordnumbarray(i,iblk).eq.intone) then 

                     xvectcoord(i,iblk) = globalxcoord(i,iblk) - 

     &               avgxcoord 

                     yvectcoord(i,iblk) = globalycoord(i,iblk) - 

     &               avgycoord 

                     zvectcoord(i,iblk) = globalzcoord(i,iblk) - 

     &               avgzcoord 

                  endif 

               enddo 

            enddo 

 

            do k = 1, coalest 

 

c....!Values to be re-initialized for each coalescence 

               sign_of_vect_max_xcoord = 0 

               sign_of_vect_max_ycoord = 0 

               sign_of_vect_max_zcoord = 0 

               sign_of_vect_max_xcoord_tmp = 0 

               sign_of_vect_max_ycoord_tmp = 0 
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               sign_of_vect_max_zcoord_tmp = 0 

 

               vect_max_xcoord = 0.0d0 

               vect_max_ycoord = 0.0d0 

               vect_max_zcoord = 0.0d0 

               vect_max_xcoord_tmp = 0.0d0 

               vect_max_ycoord_tmp = 0.0d0 

               vect_max_zcoord_tmp = 0.0d0 

 

               vectdist_max = 0.0d0 

               vectdist_max_tmp = 0.0d0 

               vect_max_i = 0 

               vect_max_iblk = 0 

 

               vectangle(:,:) = 0.0d0 

               dotmax(:,:) = 0.0d0 

               phi_max = 0.0d0 

               length_bside_tri = 0.0d0 

               vectdist2(:,:) = 0.0d0 

               angle1 = 0.0d0 

               angle2 = 0.0d0 

               hypot_len_1 = 0.0d0 

               hypot_len_2 = 0.0d0 

 

               do iblk = 1, nelblk 

                  iel    = lcblk(1,iblk) 

                  npro   = lcblk(1,iblk+1) - iel 

 

                  do i = 1, npro 

                     if ((coalesc_tag(i,iblk).eq.0).and. 

     &               (vectdist(i,iblk).gt.vectdist_max)) then 

                        vectdist_max = vectdist(i,iblk) 

                     endif 

                  enddo 

               enddo 

 

               if (numpe.gt.1) then 

 

                  call MPI_ALLREDUCE (vectdist_max,vectdist_max_tmp,1, 

     &            MPI_DOUBLE_PRECISION,MPI_MAX, MPI_COMM_WORLD,ierr) 

               else 

                  vectdist_max_tmp = vectdist_max 

               endif 

 

               vectdist_max = vectdist_max_tmp 

 

               do iblk = 1, nelblk 

                  iel    = lcblk(1,iblk) 

                  npro   = lcblk(1,iblk+1) - iel 

 

                  do i = 1, npro 

                     if ((coalesc_tag(i,iblk).eq.0).and. 

     &         (abs(vectdist(i,iblk) - vectdist_max).lt.1.0d-24)) then 

                        vect_max_i = i 

                        vect_max_iblk = iblk !Values only known to one processor 

 

                        exit 

 

                     endif 
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                  enddo 

               enddo 

 

               if ((vect_max_i.gt.0).and.(vect_max_iblk.gt.0)) then 

 

                  vect_max_xcoord = xvectcoord(vect_max_i,vect_max_iblk) 

                  vect_max_ycoord = yvectcoord(vect_max_i,vect_max_iblk) 

                  vect_max_zcoord = zvectcoord(vect_max_i,vect_max_iblk) 

 

               endif 

 

               if (vect_max_xcoord.lt.0.0d0) then 

                  sign_of_vect_max_xcoord = 1 

               endif 

 

               if (vect_max_ycoord.lt.0.0d0) then 

                  sign_of_vect_max_ycoord = 1 

               endif 

 

               if (vect_max_zcoord.lt.0.0d0) then 

                  sign_of_vect_max_zcoord = 1 

               endif 

 

               call MPI_ALLREDUCE (abs(vect_max_xcoord), 

     &              vect_max_xcoord_tmp,1,MPI_DOUBLE_PRECISION,MPI_MAX, 

     &              MPI_COMM_WORLD,ierr) 

               call MPI_ALLREDUCE (abs(vect_max_ycoord), 

     &              vect_max_ycoord_tmp,1,MPI_DOUBLE_PRECISION,MPI_MAX, 

     &              MPI_COMM_WORLD,ierr) 

               call MPI_ALLREDUCE (abs(vect_max_zcoord), 

     &              vect_max_zcoord_tmp,1,MPI_DOUBLE_PRECISION,MPI_MAX, 

     &              MPI_COMM_WORLD,ierr) 

               call MPI_ALLREDUCE (sign_of_vect_max_xcoord, 

     &              sign_of_vect_max_xcoord_tmp,1,MPI_INTEGER,MPI_MAX, 

     &              MPI_COMM_WORLD,ierr) 

               call MPI_ALLREDUCE (sign_of_vect_max_ycoord, 

     &              sign_of_vect_max_ycoord_tmp,1,MPI_INTEGER,MPI_MAX, 

     &              MPI_COMM_WORLD,ierr) 

               call MPI_ALLREDUCE (sign_of_vect_max_zcoord, 

     &              sign_of_vect_max_zcoord_tmp,1,MPI_INTEGER,MPI_MAX, 

     &              MPI_COMM_WORLD,ierr) 

 

               if (sign_of_vect_max_xcoord_tmp.eq.intone) then 

                  vect_max_xcoord = -vect_max_xcoord_tmp 

               else 

                  vect_max_xcoord = vect_max_xcoord_tmp 

               endif 

 

               if (sign_of_vect_max_ycoord_tmp.eq.intone) then 

                  vect_max_ycoord = -vect_max_ycoord_tmp 

               else 

                  vect_max_ycoord = vect_max_ycoord_tmp 

               endif 

 

               if (sign_of_vect_max_zcoord_tmp.eq.intone) then 

                  vect_max_zcoord_tmp = -vect_max_zcoord_tmp 

               else 

                  vect_max_zcoord = vect_max_zcoord_tmp 

               endif 
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               do iblk = 1, nelblk 

                  iel    = lcblk(1,iblk) 

                  npro   = lcblk(1,iblk+1) - iel 

 

                  do i = 1, npro 

                     if ((coalesc_tag(i,iblk).eq.0).and. 

     &                  (totcoordnumbarray(i,iblk).eq.intone)) then 

                        dotmax(i,iblk) = xvectcoord(i,iblk) 

     &                  * vect_max_xcoord 

     &                  + yvectcoord(i,iblk) * vect_max_ycoord 

     &                  + zvectcoord(i,iblk) * vect_max_zcoord 

 

                        if ((dotmax(i,iblk) / (vectdist(i,iblk) 

     &                  * vectdist_max)).gt.1.0d0) then 

                           vectangle(i,iblk) = acos(1.0d0) 

                        else if ((dotmax(i,iblk) / (vectdist(i,iblk) 

     &                  * vectdist_max)).lt.-1.0d0) then 

                           vectangle(i,iblk) = acos(-1.0d0) 

                        else 

                           vectangle(i,iblk) = acos(dotmax(i,iblk) 

     &                     / (vectdist(i,iblk) * vectdist_max)) 

                        endif 

                     endif 

                  enddo 

               enddo 

 

c!....Determine the distance between each vector and vector_max 

               do iblk = 1, nelblk 

                  iel    = lcblk(1,iblk) 

                  npro   = lcblk(1,iblk+1) - iel 

 

                  do i = 1, npro 

                     if ((coalesc_tag(i,iblk).eq.0).and. 

     &                  (totcoordnumbarray(i,iblk).eq.intone)) then 

                        vectdist2(i,iblk) = sqrt((xvectcoord(i,iblk) - 

     &                     vect_max_xcoord)**2 + (yvectcoord(i,iblk) - 

     &                     vect_max_ycoord)**2 + (zvectcoord(i,iblk) - 

     &                     vect_max_zcoord)**2) 

                     endif 

                  enddo ! i 

               enddo ! iblk 

 

c....!Initialze the first tag based on the proper processor and tag the rest 

               if ((vect_max_i.gt.0).and.(vect_max_iblk.gt.0)) then 

                  coalesc_tag(vect_max_i,vect_max_iblk) = k 

               endif 

 

c!....Determine the maximum angle and assign event numbers 

               length_bside_tri = sqrt(vectdist_max**2 - 

     &         (2.0d0*bubradius)**2) 

 

               if (vectdist_max**2.ge.(2.0d0*bubradius)**2) then 

 

                  do iblk = 1, nelblk 

                     iel    = lcblk(1,iblk) 

                     npro   = lcblk(1,iblk+1) - iel 

 

                     do i = 1, npro 



www.manaraa.com

 

73 

                        if ((totcoordnumbarray(i,iblk).eq.intone).and. 

     &                     (vectdist(i,iblk).ge.2.0d0*bubradius)) then 

                           phi_max = acos(length_bside_tri / 

     &                        vectdist_max) 

                        endif 

 

                        if ((totcoordnumbarray(i,iblk).eq.intone).and. 

     &                     (vectdist(i,iblk).lt.2.0d0*bubradius)) then 

                           phi_max = asin((2.0d0*bubradius) / 

     &                        vectdist_max) 

                        endif 

 

                        if ((coalesc_tag(i,iblk).eq.0).and. 

     &                     (totcoordnumbarray(i,iblk).eq.intone)) then 

                           if ((abs(vectdist(i,iblk)-vectdist_max).le. 

     &                        (2.0d0*bubradius)).and. 

     &                        (vectangle(i,iblk).le.phi_max)) then 

 

                              coalesc_tag(i,iblk) = k 

                           endif 

                        endif 

                     enddo ! i 

                  enddo ! iblk 

 

               else 

 

c!....Calculate the maximum angle at the 1st epsilon contour 

                  if (vectdist_max.gt.0.0d0) then 

                     angle1 = acos(bubradius2 / vectdist_max) 

                     hypot_len_1 = vectdist_max*sin(angle1) 

                     hypot_len_2 = 2.0d0*bubradius - hypot_len_1 

                     angle2 = atan(hypot_len_2 / bubradius2) 

 

                     phi_max = angle1 + angle2 

 

                     do iblk = 1, nelblk 

                        iel    = lcblk(1,iblk) 

                        npro   = lcblk(1,iblk+1) - iel 

 

                        do i = 1, npro 

                           if ((coalesc_tag(i,iblk).eq.0).and. 

     &                        (totcoordnumbarray(i,iblk).eq.intone)) then 

                              if ((vectdist2(i,iblk).le. 

     &                           (2.0d0*bubradius)).and. 

     &                           (vectangle(i,iblk).le.phi_max)) then 

 

                                 coalesc_tag(i,iblk) = k 

                              endif 

                           endif 

                        enddo ! i 

                     enddo ! iblk 

                  endif 

               endif 

 

               do iblk = 1, nelblk 

                  iel    = lcblk(1,iblk) 

                  npro   = lcblk(1,iblk+1) - iel 

 

                  do m = 1, npro 
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                     if (coalesc_tag(m,iblk).eq.k) then 

                        xcoordsum_mult(k) = xcoordsum_mult(k) + 

     &                  globalxcoord(m,iblk) 

                        ycoordsum_mult(k) = ycoordsum_mult(k) + 

     &                  globalycoord(m,iblk) 

                        zcoordsum_mult(k) = zcoordsum_mult(k) + 

     &                  globalzcoord(m,iblk) 

                        totcoordnumb_mult(k) = totcoordnumb_mult(k) + 

     &                  totcoordnumbarray(m,iblk) 

                     endif 

                  enddo ! m 

               enddo ! iblk 

 

               if (numpe > 1) then   !Matt T. 

                  call MPI_ALLREDUCE(xcoordsum_mult(k), 

     &                 totxcoordsum_mult(k),1,MPI_DOUBLE_PRECISION, 

     &                 MPI_SUM, MPI_COMM_WORLD,ierr) 

                  call MPI_ALLREDUCE(ycoordsum_mult(k), 

     &                 totycoordsum_mult(k),1,MPI_DOUBLE_PRECISION, 

     &                 MPI_SUM, MPI_COMM_WORLD,ierr) 

                  call MPI_ALLREDUCE(zcoordsum_mult(k), 

     &                 totzcoordsum_mult(k),1,MPI_DOUBLE_PRECISION, 

     &                 MPI_SUM, MPI_COMM_WORLD,ierr) 

                  call MPI_ALLREDUCE(totcoordnumb_mult(k), 

     &                 totcoordcount_mult(k),1,MPI_INTEGER,MPI_SUM, 

     &                 MPI_COMM_WORLD, ierr) 

 

                  if (totcoordcount_mult(k).gt.0) then 

                     avgxcoordf(k) = totxcoordsum_mult(k) / 

     &               DBLE(totcoordcount_mult(k)) !Matt T. 

                     avgycoordf(k) = totycoordsum_mult(k) / 

     &               DBLE(totcoordcount_mult(k)) 

                     avgzcoordf(k) = totzcoordsum_mult(k) / 

     &               DBLE(totcoordcount_mult(k)) 

                  endif 

 

               else 

 

                  if (totcoordnumb_mult(k).gt.0) then 

                     avgxcoordf(k) = xcoordsum_mult(k) / 

     &               DBLE(totcoordnumb_mult(k)) !Matt T. 

                     avgycoordf(k) = ycoordsum_mult(k) / 

     &               DBLE(totcoordnumb_mult(k)) 

                     avgzcoordf(k) = zcoordsum_mult(k) / 

     &               DBLE(totcoordnumb_mult(k)) 

                  endif 

 

               endif ! numpe 

 

            enddo ! coalest 

 

c!....Consolidate any average points that are too close to one another 

            avgcoordfdist(:,:) = 2.0d0*bubradius 

            consol_tag(:) = 0 

            avgcoordf_erase_tag(:) = 0 

 

            do k1 = 1, (coalest-1) 

               if (avgxcoordf(k1).gt.-1.0d3) then 

                  do k2 = (k1+1), coalest 
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                     avgcoordfdist(k1,k2) = sqrt((avgxcoordf(k1) - 

     &               avgxcoordf(k2))**2 + (avgycoordf(k1) - 

     &               avgycoordf(k2))**2 + (avgzcoordf(k1) - 

     &               avgzcoordf(k2))**2) 

                  enddo 

               endif 

            enddo 

 

            do k1 = 1, (coalest-1) 

               do k2 = (k1+1), coalest 

                  if (avgcoordfdist(k1,k2).lt.(2.0d0*bubradius)) then 

                     do iblk = 1, nelblk 

                        iel    = lcblk(1,iblk) 

                        npro   = lcblk(1,iblk+1) - iel 

 

                        do i = 1, npro 

                           if (coalesc_tag(i,iblk).eq.k2) then 

                              coalesc_tag(i,iblk) = k1 

                           endif 

                        enddo ! i 

                     enddo ! iblk 

 

                     consol_tag(k1) = 1 

                     avgcoordf_erase_tag(k2) = 1 

 

                  endif ! avgcoordfdist 

               enddo ! k2 

            enddo ! k1 

 

            do k1 = 1, (coalest-1) 

               do k2 = (k1+1), coalest 

                  if (avgcoordf_erase_tag(k2).eq.intone) then 

                     avgxcoordf(k2) = -1.0d3 

                     avgycoordf(k2) = -1.0d3 

                     avgzcoordf(k2) = -1.0d3 

                  endif 

               enddo ! k2 

 

               if (consol_tag(k1).eq.intone) then 

 

                  xcoordsum_mult(k1) = 0.0d0 

                  ycoordsum_mult(k1) = 0.0d0 

                  zcoordsum_mult(k1) = 0.0d0 

                  totcoordnumb_mult(k1) = 0.0d0 

 

                  totxcoordsum_mult(k1) = 0.0d0 

                  totycoordsum_mult(k1) = 0.0d0 

                  totzcoordsum_mult(k1) = 0.0d0 

                  totcoordcount_mult = 0.0d0 

 

                  do iblk = 1, nelblk 

                     iel    = lcblk(1,iblk) 

                     npro   = lcblk(1,iblk+1) - iel 

 

                     do m = 1, npro 

                        if (coalesc_tag(m,iblk).eq.k1) then 

                           xcoordsum_mult(k1) = xcoordsum_mult(k1) + 

     &                     globalxcoord(m,iblk) 

                           ycoordsum_mult(k1) = ycoordsum_mult(k1) + 
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     &                     globalycoord(m,iblk) 

                           zcoordsum_mult(k1) = zcoordsum_mult(k1) + 

     &                     globalzcoord(m,iblk) 

                           totcoordnumb_mult(k1) = totcoordnumb_mult(k1) 

     &                     + totcoordnumbarray(m,iblk) 

                        endif 

                     enddo !m 

                  enddo !iblk 

 

                  if (numpe > 1) then   !Matt T. 

                     call MPI_ALLREDUCE(xcoordsum_mult(k1), 

     &                    totxcoordsum_mult(k1),1,MPI_DOUBLE_PRECISION, 

     &                    MPI_SUM, MPI_COMM_WORLD,ierr) 

                     call MPI_ALLREDUCE(ycoordsum_mult(k1), 

     &                    totycoordsum_mult(k1),1,MPI_DOUBLE_PRECISION, 

     &                    MPI_SUM, MPI_COMM_WORLD,ierr) 

                     call MPI_ALLREDUCE(zcoordsum_mult(k1), 

     &                    totzcoordsum_mult(k1),1,MPI_DOUBLE_PRECISION, 

     &                    MPI_SUM, MPI_COMM_WORLD,ierr) 

                     call MPI_ALLREDUCE(totcoordnumb_mult(k1), 

     &                    totcoordcount_mult(k1),1,MPI_INTEGER,MPI_SUM, 

     &                    MPI_COMM_WORLD, ierr) 

 

                     if (totcoordcount_mult(k1).gt.0) then 

                        avgxcoordf(k1) = totxcoordsum_mult(k1) / 

     &                  DBLE(totcoordcount_mult(k1)) 

                        avgycoordf(k1) = totycoordsum_mult(k1) / 

     &                  DBLE(totcoordcount_mult(k1)) 

                        avgzcoordf(k1) = totzcoordsum_mult(k1) / 

     &                  DBLE(totcoordcount_mult(k1)) 

                     endif 

 

                  else 

 

                     if (totcoordnumb_mult(k1).gt.0) then 

                        avgxcoordf(k1) = xcoordsum_mult(k1) / 

     &                  DBLE(totcoordnumb_mult(k1)) 

                        avgycoordf(k1) = ycoordsum_mult(k1) / 

     &                  DBLE(totcoordnumb_mult(k1)) 

                        avgzcoordf(k1) = zcoordsum_mult(k1) / 

     &                  DBLE(totcoordnumb_mult(k1)) 

                     endif 

 

                  endif ! numpe 

               endif ! consoltag 

            enddo ! k1 

 

         else 

            avgxcoordf(1) = avgxcoord 

            avgycoordf(1) = avgycoord 

            avgzcoordf(1) = avgzcoord 

         endif !avgxcoord and avgvectdist 

 

         end 

Coalescence Event Time Tracking Subroutine (coalescapptime.f): 

         subroutine CoalescAppTime(avgxcoordf, avgycoordf, avgzcoordf, 
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     &                             avgxcoordold2, avgycoordold2, 

     &                             avgzcoordold2, app_time, itrtimestp) 

c 

c---------------------------------------------------------------------- 

c 

c This routine assigns the new center coordinates for the coalescence 

c control and tracks the amount of time the coalescence force has 

c been active. 

c 

c Matt Talley, Winter 2014. 

c---------------------------------------------------------------------- 

c 

        use pvsQbi  ! brings in NABI 

        use stats   ! 

        use pointer_data  ! brings in the pointers for the blocked arrays 

        use local_mass 

        use spat_var_eps 

        use timedata  ! for iblkts usage 

c 

        include "common.h" 

        include "mpif.h" 

c 

        real*8 avgxcoordf(coalest), avgycoordf(coalest), 

     &         avgzcoordf(coalest), avgxcoordold2(coalest), 

     &         avgycoordold2(coalest), avgzcoordold2(coalest), 

     &         avgcoorddist(coalest,coalest), 

     &         app_time(coalest,2) 

 

        real*8 itrtimestp, coalesc_time 

 

        integer event_tag(coalest,coalest) 

 

c!.... Initialize variables 

        event_tag(:,:) = 0 

        app_time(:,1) = 0.0d0 

        avgcoorddist(:,:) = 1.0d4 

        coalesc_time = 0.0d0 

 

c!.... Calculate the maximum coalescence time 

        coalesc_time = sqrt((((coalbubrad)**3) * datmat(1,1,1)) 

     &                 / (16.0d0 *(1/Bo))) * log(1.0d-4/1.0d-8) 

 

        do k1 = 1, coalest 

           avgxcoordold(k1) = avgxcoordf(k1) 

           avgycoordold(k1) = avgycoordf(k1) 

           avgzcoordold(k1) = avgzcoordf(k1) 

 

c!....Track the amount of time the Coalescence Control Algorithm has 

c!....active for each different event 

 

           if (app_time(k1,2).le.coalesc_time) then 

              if (avgxcoordold2(k1).gt.-1.0d3) then 

                 do k2 = 1, coalest 

                    avgcoorddist(k1,k2) = sqrt((avgxcoordold(k2) - 

     &              avgxcoordold2(k1))**2 + (avgycoordold(k2) - 

     &              avgycoordold2(k1))**2 + (avgzcoordold(k2) - 

     &              avgzcoordold2(k1))**2) 

                 enddo ! k2 
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                 do k2 = 1, coalest 

                    if ((avgcoorddist(k1,k2).lt.coalbubrad).and. 

     &                 (event_tag(k1,k2).eq.0)) then 

                       app_time(k2,1) = app_time(k1,2) + itrtimestp/2.0d0 

                       event_tag(k1,:) = 1 

                       event_tag(:,k2) = 1 

                       coalcon_rem(k1) = 0 

 

                       if (myrank.eq.master) write(*,*) 'Coalescence', 

     &                 ' Event #: ',k1,' to ',k2 

                       if (myrank.eq.master) write(*,*) 'x average', 

     &                 ' position:', avgxcoordold(k2) 

                       if (myrank.eq.master) write(*,*) 'y average', 

     &                 ' position:', avgycoordold(k2) 

                       if (myrank.eq.master) write(*,*) 'z average', 

     &                 ' position:', avgzcoordold(k2) 

                    endif 

                 enddo ! k2 

 

                 do k2 = 1, coalest 

                    if (event_tag(k1,k2).eq.0) then 

                       if ((avgcoorddist(k1,k2).gt.coalbubrad).and. 

     &                    (avgcoorddist(k1,k2).lt.1.0d4)) then 

                          app_time(k1,2) = 0.0d0 

                          coalcon_rem(k1) = 1 

                          event_tag(k1,:) = 1 

 

                          if (myrank.eq.master) write(*,*) 'Old', 

     &                    ' Coalescence Event #: ',k1,' has ended', 

     &                    ' because they bounced off one another' 

                       endif 

                    endif 

                 enddo ! k2 

              endif 

 

           else 

 

              if (avgxcoordold2(k1).gt.-1.0d3) then 

                 do k2 = 1, coalest 

                    avgcoorddist(k1,k2) = sqrt((avgxcoordold(k2) - 

     &              avgxcoordold2(k1))**2 + (avgycoordold(k2) - 

     &              avgycoordold2(k1))**2 + (avgzcoordold(k2) - 

     &              avgzcoordold2(k1))**2) 

                 enddo ! k2 

                 do k2 = 1, coalest 

                    if ((avgcoorddist(k1,k2).lt.coalbubrad).and. 

     &                 (event_tag(k1,k2).eq.0)) then 

                       app_time(k2,1) = app_time(k1,2) + itrtimestp/2.0d0 

                       event_tag(k1,:) = 1 

                       event_tag(:,k2) = 1 

                       coalcon_rem(k1) = 1 

 

                       if (myrank.eq.master) write(*,*) 'Coalescence', 

     &                 ' Event #: ',k1,' to ',k2,' has exceeded the', 

     &                 ' drainage time and the force is being removed.' 

                    endif 

                 enddo ! k2 

 

                 do k2 = 1, coalest 
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                    if (event_tag(k1,k2).eq.0) then 

                       if ((avgcoorddist(k1,k2).gt.coalbubrad).and. 

     &                    (avgcoorddist(k1,k2).lt.1.0d4)) then 

                          app_time(k1,2) = 0.0d0 

                          coalcon_rem(k1) = 1 

                          event_tag(k1,:) = 1 

 

                          if (myrank.eq.master) write(*,*) 'Old', 

     &                    ' Coalescence Event #: ',k1,' has ended' 

                       endif 

                    endif 

                 enddo ! k2 

              endif 

           endif !(app_time) 

 

           if (app_time(k1,2).le.coalesc_time) then 

              if (avgxcoordold2(k1).le.-1.0d3) then 

                 do k2 = 1, coalest 

                    if ((event_tag(k1,k2).eq.0).and. 

     &              (avgxcoordold(k2).gt.-1.0d3)) then 

 

                       app_time(k2,1) = itrtimestp/2.0d0 

                       event_tag(:,k2) = 1 

                       coalcon_rem(k1) = 0 

 

                       if (myrank.eq.master) write(*,*) 'New', 

     &                 ' Coalescence Event #: ',k2 

                       if (myrank.eq.master) write(*,*) 'x average', 

     &                 ' position:', avgxcoordold(k2) 

                       if (myrank.eq.master) write(*,*) 'y average', 

     &                 ' position:', avgycoordold(k2) 

                       if (myrank.eq.master) write(*,*) 'z average', 

     &                 ' position:', avgzcoordold(k2) 

 

                    endif 

                 enddo !k2 

              endif 

           endif 

        enddo ! k1 

 

        app_time(:,2) = app_time(:,1) 

        avgxcoordold2(:) = avgxcoordold(:) 

        avgycoordold2(:) = avgycoordold(:) 

        avgzcoordold2(:) = avgzcoordold(:) 

 

        end 
 

 


