
www.manaraa.com

ABSTRACT

TALLEY, MATTHEW LOWELL. Bubble Coalescence Control Development for Level Set

Interface Tracking Method. (Under the direction of Dr. Igor A. Bolotnov).

 The level-set interface tracking method in connection with direct numerical simulation of

turbulence is an important tool for development of improved closure laws for multiphase

computational fluid dynamic models. However, the standard formulation of level-set interface

tracking method is unable to accurately represent the bubble coalescence process. Physically,

when two bubbles approach, a thin liquid film develops between the bubbles. If this film has

sufficient time to drain, then the bubbles will coalesce. Otherwise, the bubbles will bounce off

one another. However, the standard level set method will cause coalescence of any bubbles

that approach close to one another. Also, since the level-set method uses a smoothed Heaviside

function to transition between phase properties, this causes the coalescence process to begin

sooner than experimentally observed since the thin liquid film represented by the method has

somewhat mixed gas/liquid properties. In order to simulate the coalescence process more

accurately, an algorithm was developed to prevent or slow the coalescence process. This

algorithm locally changes the surface tension on a portion of the bubble surface when it detects

that two bubbles approach each other. This local change in surface tension creates a net force

that repels the bubbles. The algorithm is also capable of tracking the amount of time the surface

tension has been changed to slow the coalescence process. It compares it to a coalescence time

model and removes the changed surface tension if the prescribed model time has been

exceeded. In order to test the capabilities of the algorithm, the following simulations were

designed and performed: (i) two bubbles in laminar flow approaching one another, (ii) 32

bubbles in turbulent flow conditions, and (iii) a bubble rising towards a free surface. The first

www.manaraa.com

two simulations tested the identification and prevention portion of the algorithm. The last

simulation tested the time tracking portion of the algorithm. In all cases, the program was able

to prevent or slow the coalescence process. An increase in computational cost from 10-25%

was observed when using this algorithm. Mesh studies and another set of simulations were

performed in order to verify the algorithm is performing properly and better simulate physical

coalescence.

www.manaraa.com

© Copyright 2015 Matthew Talley

All Rights Reserved

www.manaraa.com

Bubble Coalescence Control Development for Level Set Interface Tracking Method

by

Matthew Lowell Talley

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Nuclear Engineering

Raleigh, North Carolina

2015

APPROVED BY:

_______________________________ ______________________________

Dr. Igor A. Bolotnov Dr. Nam Dinh

Committee Chair

________________________________ ________________________________

Dr. Steven C. Shannon Dr. Jack R. Edwards Jr.

www.manaraa.com

ii

BIOGRAPHY

 The author graduated from Brigham Young University (BYU) with a Bachelor of Science

degree in Mechanical Engineering in 2012. As an undergraduate student at BYU, started work

on a research project with a professor in developing an algorithm to study the evolution of

nuclear fuel composition during burn up. While attending BYU, he also took part in a Student

Undergraduate Laboratory Internship at the Princeton Plasma Physics Laboratory (PPPL) in

Princeton, New Jersey. He also deferred his studies for two years to serve as a missionary in

Kyiv, Ukraine for the Church of Jesus Christ of Latter Day Saints. While there, he was able to

develop fluency in the Ukrainian language. His research experience at BYU and PPPL lead

him to pursue a Master of Science degree enroute to a Doctor of Philosophy degree both in

Nuclear Engineering. As hobbies, he enjoys rock climbing, watching movies, and spending

time with his family.

www.manaraa.com

iii

ACKNOWLEDGMENTS

 I would first like to give my appreciation to Heavenly Father and His Son who have blessed

me greatly and given me the faith and strength to become the person I am today. I would also

like to deeply thank my wife McKenna for all her support, love, and patience. She has endured

many long days waiting patiently for me to finish and fulfill my responsibilities for work and

school. I thank my parents for all their love and support. I appreciate my father for the example

he has set for me as a husband, provider, and man of God as well as his support in all my

endeavors. I also have deep gratitude for my mother and the love, help, and nurturing she has

provided throughout my life. She has always been there for me no matter the situation.

 I want to express my most heartfelt appreciation for Dr. Bolotnov and his guidance

throughout this whole experience. His knowledge and experience in computational fluid

dynamics (CFD) have been instrumental in developing my foundation as a future researcher

and engineer. I also want to thank Jun Fang and Matt Thomas for all their help in working

through the basics of CFD and in generating insightful discussions to develop innovative

solutions. Lastly I would like to express my appreciation for Eric Homer and his advice and

encouragement before embarking on my graduate studies. He helped me begin the

development of the necessary traits to perform quality research as an undergraduate student.

www.manaraa.com

iv

TABLE OF CONTENTS

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 LITERATURE REVIEW ... 2

2.1 General Overview ... 2

2.2 Level-Set Method Overview ... 9

CHAPTER 3 ALGORITHM DEVELOPMENT ... 13

3.1 Repulsive Force .. 14

3.2 Location Identification .. 18

3.2.1 Single Event ... 18

3.2.2 Multiple Events .. 22

3.3 Drainage Time .. 29

CHAPTER 4 SIMULATIONS... 30

4.1 Two Bubble Coalescence Prevention ... 31

4.2 Multi-Bubble Coalescence Prevention ... 33

4.3 Coalescence Time Tracking .. 38

CHAPTER 5 VERIFICATION AND VALIDATION .. 41

5.1 Mesh Study ... 41

5.1.1 Discrete Mesh .. 43

5.1.2 Parasolid Mesh ... 46

5.2 Minimum Liquid Film Thickness during Coalescence Control 47

5.3 Initial and Final Bubble Diameter Distribution .. 50

5.4 Bubble Approach Velocity Effect on Coalescence ... 52

CHAPTER 6 CONCLUSION .. 53

6.1 Discussion ... 53

6.2 Future Work .. 54

REFERENCES .. 59

APPENDIX .. 63

Appendix A ... 64

www.manaraa.com

v

LIST OF TABLES

Table 1: Overview of simulation parameters for the single coalescence prevention simulation.

... 32
Table 2: Overview of simulation parameters for the multi-bubble coalescence prevention

simulation. ... 35
Table 3: Overview of simulation parameters for the time tracking tests. 38
Table 4: Overview of simulation parameters for both mesh types. .. 42

Table 5: Contains the average coordinates for different discrete domain resolutions. It also

contains the exact geometric coordinates and distance between bubble centers. 44
Table 6: Contains the error between the reported coordinates and the exact geometric

coordinates normalized by the distance between bubble centers. ... 44
Table 7: Contains the average coordinates for different parasolid domain resolutions. It also

contains the exact geometric coordinates and distance between bubble centers. 46

Table 8: Contains the error between the reported coordinates and the exact geometric

coordinates normalized by the distance between bubble centers. ... 46

Table 9: Initial liquid film thickness based on which distance field contour is used to activate

the coalescence control algorithm. .. 49
Table 10: Overview of experiment and simulation parameters for the bubble approach

velocity effect on coalescence simulation. .. 52

www.manaraa.com

vi

LIST OF FIGURES

Figure 1: Figure reproduced from Lee and Hodgson [4]. Interface mobility with soluble

surfactant: expansion determined by mass transfer. (i) Normal diffusion from outside film.

(ii) Normal diffusion from inside film. (iii) Radial diffusion following depletion of film. 4
Figure 2: Graph of film thickness vs. time reproduced from data reported by Kirkpatrick and

Lockett [16]. The above plot shows that only approach velocities less than 12 cm/s allow

enough time for the liquid film to drain and the interface to rupture. 5

Figure 3: The picture shows how the coalescence angle is defined. .. 7
Figure 4: Plot reproduced from data reported by Sanada et. al [2]. The above plot is a

comparison of experimental results and calculations. It shows that their simulation was able

to closely model what was observed by Kirkpatrick and Lockett [16]. 10
Figure 5: A plot of the smoothed Heaviside function that represents the transition of gas to

liquid fluid properties .. 11

Figure 6: Schematic of how the coalescence control is implemented and restricts coalescence.

... 15

Figure 7: An initial time step with the coalescence control application volume shown as the

white circle and the black circles as the bubble interfaces ... 16
Figure 8: An later time step after surface tension changed with the coalescence control

application volume shown as the white circle and the black circles as the bubble interfaces 16
Figure 9: The distance field of the bubbles shown as the white contour lines with the black

circles representing the bubble interface ... 19

Figure 10: Location of high curvature where coordinates are used to generate average

coalescence event coordinates .. 19

Figure 11: Plot of chosen curvature values plotted against the number of elements across a 5

mm bubble diameter. A linear fit was applied with the resulting equation and square of the

correlation coefficient. .. 20
Figure 12: Summary of process to identify a coalescence event and calculate the average

coordinates for the event. .. 21
Figure 13: Summary of process to find the average coordinates for each specific coalescence

event during multiple coalescence events. .. 23

Figure 14: Triangle formed by three vectors during multi-event coalescence identification. 24
Figure 15: Schematic of triangle to calculate the angle gamma when the sides b and c are

known. ... 28
Figure 16: Initial setup to test the algorithm for a single coalescence event identification and

prevention. .. 32
Figure 17: Visualization of the simulations for the single coalescence events at iterations: (a)

20, (b) 400, and (c) 870. Top: The simulation performed without the coalescence control

algorithm. In iteration 870, the 5 mm bubbles have begun to coalesce. Bottom: The

simulation performed with the coalescence control algorithm. In iteration 870, the

coalescence event has been prevented. ... 33
Figure 18: Overview of the simulation domain dimensions and axis orientation. The shaded

planes represent walls. .. 34

www.manaraa.com

vii

Figure 19: Initial setup at iteration 7800 of the bubbly flow in turbulent conditions. There are

32 bubbles randomly placed throughout the domain. ... 35
Figure 20: Visualization of both 32 bubble simulation at multiple iterations. Top: No

coalescence control, Iterations (a) 15600, (b) 23800, (c) 27800. Bottom: Coalescence control

active, Iterations (a) 15000, (b) 22600, (c) 26800. ... 37
Figure 21: Initial setup for the bubble rising towards a free surface. The simulation was used

to test the time tracking portion of the algorithm. .. 39
Figure 22: Visualization of both simulations at iterations (a) 800, (b) 920, and (c) 1150. Top:

Simulation run without using the time tracking portion of the algorithm. Bottom: Simulation

that uses the time tracking portion of the algorithm. .. 40
Figure 23: Initial setup of the simulation used in the mesh study. The domain contains two 5

mm bubble. ... 42
Figure 24: Visualization of a (a) discrete mesh and a (b) parasolid mesh. 43

Figure 25: Visualization of the discrete mesh study for the 20 element and 40 element

resolutions. Left: The 20 element resolution at iteration 250. Right: The 40 element

resolution at iteration 500. .. 45
Figure 26: Visualization of the parasolid mesh study for the 20 element and 40 element

resolution. (a) The 20 element resolution at iteration 280. (b) The 40 element resolution at

iteration 500. ... 48
Figure 27: Visualization of liquid film thickness simulations at iteration 880 and 940. (a)

Original algorithm. (b) Force activates at fourth contour. (c) Force activates at the third

contour. ... 51

www.manaraa.com

1

CHAPTER 1 INTRODUCTION

 The development of new generation of advanced nuclear reactors requires robust tools to

predict thermal hydraulic behavior in complex geometries. Interface tracking approach with

direct numerical simulation (DNS) of turbulence may not yet allow the prediction of large

systems, but represents a valuable tool in development of closure laws for multiphase

computational fluid dynamics (M-CFD) models. Massively parallel finite element based code,

PHASTA [1] is a one such DNS software package that uses level set interface tracking to

model the fully resolved bubbly flows. However, the standard level-set approach lacks the

capability to represent the physics of bubble coalescence.

 The objective of this research is to present an algorithm developed for the level-set approach

that is used in PHASTA that controls bubble coalescence events. This consists of how the

algorithm works to identify and simulate coalescence events in multiphase bubbly flows, 3D

simulation results when using the algorithm, and the algorithm’s verification and validation

based on available experimental results.

 Chapter 2 consists of a literature review that details previous research performed on bubble

coalescence through analytical, experimental, and numerical studies. The former includes

research with DNS and the level-set approach.

 Chapter 3 describes the development of the algorithm to: (i) simulate liquid film the

drainage time using a force to counteract the motion of the approaching bubbles; (ii) identify

the coalescence event locations; (iii) model how long the force should be active for each event

to give the bubbles the opportunity to move away from (bounce off) one another.

www.manaraa.com

2

 Chapter 4 presents several simulations performed using the coalescence control algorithm

for different purposes based on certain conditions. This includes preventing all coalescence

events and using the application time portion of the algorithm to allow some events to occur.

 Chapter 5 covers the verification and validation of the coalescence control algorithm based

on other experimental and simulation results.

 Chapter 6 provides a discussion of the results and covers the necessary future work to

continue to develop the algorithm.

CHAPTER 2 LITERATURE REVIEW

2.1 General Overview

 Up until recently, the study of bubble coalescence in two-phase flow could be characterized

into two major categories: surfactant/impurity effects on coalescence and the mechanics behind

the coalescence process [2]. However, with the continuing development of computing power,

a third category could be added. This third category consists of applying the analytical models

of the first two categories to numerical analysis of bubble coalescence.

 The analytical analysis of bubble coalescence mainly focuses on the drainage of the thin

liquid film that develops between two approaching bubbles. It was determined in early

analytical studies of bubble coalescence to break the process into two separate regimes: (1) an

initial drainage regime where the film drains to a thickness such that rupture can occur and (2)

a final drainage regime where molecular forces become significant and rupture occurs [3], [

4], [5], [6]. An extensive review of the concepts used in early analytical models is covered

by Lee and Hodgson [4] as they described the types of forces present near the film, the flow

www.manaraa.com

3

of the liquid film, and the mobility of the interface under varying surfactant effects (See Figure

1). As the research progressed, models were developed to calculate the film thickness of the

bubbles at the different drainage regimes based on physical properties [3], [5], [6]. These

film thickness calculations also lead the authors to develop models for the time required for

coalescence to occur. Prince and Blanch [7] furthered the development of coalesce time

models by taking into account bubble collisions caused by turbulence, buoyance, laminar shear

as well as the efficiency of these collisions. Their model was developed with distilled water as

an assumption but was found to be inadequate when applied to systems with a significant

amount of solute because of the large decrease in the coalescence rate. This was attributed to

the effects of turbulence on surface mobility, the dynamics of bubble collisions, and the solute

concentration at the gas-liquid interface of the coalescing bubbles.

 Many analytical models for coalescence were also developed in conjunction with

experimental studies and measurements. As mentioned previously, many of the studies focused

on one of two categories. For a more comprehensive review on surfactant effects on bubble

coalescence, one is referred to Marrucci and Nicodemo [8], Lessard and Zieminski [9], Cain

and Lee [10], Kim and Kook [11], Craig et al. [12], and Danov et al. [13]. For the mechanics

of bubbles coalescence, the areas of study frequently focused on the dynamics of the liquid

flow and the properties of the liquid in which the bubbles are immersed. It was found that for

bubbles vertically aligned, coalescence would occur even if the calculated infinite rise velocity

suggested that it was impossible [14].

www.manaraa.com

4

Figure 1: Figure reproduced from Lee and Hodgson [4]. Interface mobility with soluble surfactant: expansion determined

by mass transfer. (i) Normal diffusion from outside film. (ii) Normal diffusion from inside film. (iii) Radial diffusion

following depletion of film.

For bubbles rising in a stagnant liquid, it was determined that the only forces active on the

second bubble were the buoyance force and the inertia drag force. The second bubble could

approach the first bubble to coalesce because the inertia drag force would be reduced once the

second bubble entered the wake of the first bubble [14], [15]. It was also found by de Nevers

and Wu [15] that it was necessary to add a small amount of sodium ethyl xanthate to the

distilled water in order to reduce surface tension and promote coalescence. This result may

also be explained in conjunction with the work of Kirkpatrick and Lockett. They observed that

when bubbles approach one another with a velocity greater than 12 𝑐𝑚 𝑠⁄ , the bubbles would

Liquid Flow

(i)

(ii)

(iii)

www.manaraa.com

5

come to rest before the film thickness would rupture [16] (See Figure 2). This allows the

stored strain energy in the film to act on the bubbles and push them away from one another

resulting in the bubbles bouncing off one another.

Figure 2: Graph of film thickness vs. time reproduced from data reported by Kirkpatrick and Lockett [16]. The above

plot shows that only approach velocities less than 12 cm/s allow enough time for the liquid film to drain and the interface

to rupture.

 As these results were obtained, more focus on coalescence was turned to measuring the

property effects of the liquid in conjunction with the flow characteristics. These studies

generally consisted of using non-dimensional numbers to find relations between coalescence

and property effects [2], [17], [18]. Stewart [17] observed that there is a transition region

for coalescence mechanics with the Morton (Mo) number. He found that when 10−6 < 𝑀𝑜 <

10−4 that the in-line collision coalescence ceases and that coalescence only occurs after the

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.00E+00 4.00E-03 8.00E-03 1.20E-02 1.60E-02

Fi
lm

 T
h

ic
kn

es
s

(c
m

)

Time (sec)

Bubble-Bubble Contact

8 cm/sec Relative Velocity

10 cm/sec Relative Velocity

12 cm/sec Relative Velocity

22 cm/sec Relative Velocity

Rupture

www.manaraa.com

6

collision when the bubbles begin to “dance” with one another. Sanada et al. [2] in their 2005

study observed that an increasing Weber (We) number lead to a bubble bouncing off a free

surface which in effect lengthens the coalescence time. A later study in 2009 by Sanada et al.

[18] showed that the critical Reynolds (Re) number over which bubbles bounced decreased

with an increase in Mo. They also showed that irrespective of the Mo value, a critical We value

for bouncing was approximately equal to 2.0. It is important to note that for both Re and We

in the 2009 study that a vertical rise velocity was used to calculate the non-dimensional

numbers. Unlike the previous experiments, Kang et al. [19] performed an experiment that

did not use non-dimensional numbers. They measured the effects of nonuniform temperature

distribution on bubble coalescence. They found that because of thermocapillary forces from

the nonuniform temperature, it caused one of the bubbles to glide over the surface of the other

bubble which resulted in a coalescence probability distribution based on coalescence angle. It

was observed that the highest probability of coalescence occurred between 20° − 40° angle.

The angle between the temperature gradient and line connecting the bubble centers (See Figure

3).

 As the mechanics of coalescence became better understood, some research shifted focus to

modeling coalescence rates and void fraction over the length of a tube with bubbly flow [20

], [21]. Kamp et al. [22] took the work further by making the models more robust through

two steps. The first step took an expression for collision frequency and coalescence probability

of equal bubbles during turbulence-driven, high Re collisions [23] and altered it to be

applicable for unequal bubbles and to account for interactions between the bubbles and flow

as well as between bubble-bubble. In the second step, the coalescence rate is used in the

www.manaraa.com

7

transport equation to find source terms which can be calculated in a CFD code. This results in

a more robust CFD code to predict evolution of bubble sizes. Mattson and Mahesh [24] took

the expression of coalescence time scale from the previous model by Kamp et al. [22] and

used it to develop a probability of coalescence. They then validated it using the result form

Colin et al. [20] and find excellent agreement between the bubble size distributions. For a

more comprehensive review of CFD studies on bubble coalescence, one is referred to Olmos

et al. [25], Sommerfeld et al. [26], and van den Hengel et al. [27]. However, since CFD

codes use approximations, they are unable to account for all of the fluid and bubble behavior

and require DNS studies [24], [28].

Figure 3: The picture shows how the coalescence angle is defined.

 DNS simulations use numerical techniques to solve the time dependent Navier-Stokes

equations in three dimensions [29]. For a review of multiphase DNS simulations, one is

www.manaraa.com

8

referred to Crowe et. al. [30]. For DNS simulations, many different methods have been

proposed to track the bubble interfaces including the Front-Tracking (FT) method, the Volume-

of-Fluid (VOF) method, the Lattice Boltzmann (LBM) method, and the Level-Set (LS)

method. The majority of the mention methods inherently incorporate coalescence of bubbles

without any issue. The FT method however uses two separate grids for the two different phases

and is unable to represent coalescence without a subgrid model. The VOF method can simulate

coalescence but it is difficult to calculate the curvature from the front using volume fractions.

Van Sint Annaland et al. [31] and Sussman et al. [32] provide a more comprehensive review

of each of the above mentioned interface tracking methods. For more specific review of the

FT, VOF, and LBM, one is referred to the following: Unverdi and Tryggvason [33], van Sint

Annaland et al. [31], and Dabiri et al. [29] for FT, van Sint Annaland et al. [34] and

Passandideh-Fard et al. [35] for VOF, and Takada et al. [36] and Inamuro et al. [37] for

LBM.

 The LS method uses a distance field to track the bubbles. The bubble-fluid interface is

identified by a distance field value of zero. The method also uses a smoothed Heaviside

function to shift between gaseous and liquid properties across the interface. For more

information on the LS method, one is referred to two papers by Sussman et al., one published

in 1994 [38] and one published in 1999 [32], and by Osher and Fedkiw [39]. The LS method

was further tested and validated using experimental data from Kirkpatrick and Lockett [2]. A

bubble and free surface were modeled in a two dimensional simulation with a grid resolution

of 150 x 150 or 40 points per diameter. In order to prevent coalescence, the two interfaces were

modeled using two independent distance functions. The bubble bounced with the free surface

www.manaraa.com

9

in the simulation just as seen in the experiment (See Figure 4). It was also determined that the

We number causing bouncing is constant and that the coalescence time increases with

increasing We number. Yang et al. [40] continued development with the LS method by

combining it with the VOF method to make a hybrid called the adaptive coupled level-

set/volume-of-fluid (ACLSVOF) method. They found that ACLSVOF took advantage of the

strengths of both the LS and VOF methods by making the surface tension calculations easier

and more accurate while also keeping the mass conserved accurately. Yu and Fan [41] also

studied the accuracy of the LS method. They performed simulations for a bubble rising in an

infinite liquid by means of the buoyancy force in a three dimensional environment. They

investigated the bubble shapes based on the Re and found good agreement between their

simulations and experimental results. They also studied the shape of bubbles during

coalescence with the LS method and noted a deviation in the shape of the second bubble

compared with a single bubble case. They mentioned that no successful method has been

developed to portray bouncing and coalescence based on the dynamic conditions of when they

collide and that whether the bubbles will coalesce or bounce must be decided before the

simulation is run.

2.2 Level-Set Method Overview

 In order to understand how the coalescence control algorithm detects coalescence events, a

more in depth understanding of the LS method is required. As previously mentioned, one may

find more information on the LS method in two papers by Sussman et al., one published in

1994 [38] and one published in 1999 [32], and by Osher and Fedkiw [39]. For this deeper

www.manaraa.com

10

look into the LS method, the following section has been taken from a paper written by Bolotnov

et al. [42] to provide the necessary background.

Figure 4: Plot reproduced from data reported by Sanada et. al [2]. The above plot is a comparison of experimental results

and calculations. It shows that their simulation was able to closely model what was observed by Kirkpatrick and Lockett [

16].

 The level set method of Sussman [43], [44], [32] and Sethian [45] involves modeling

the interface as the zero-level set of a smooth function, φ, where φ is often called the first scalar

and it represents the signed distance from the interface. Hence, the interface is defined by φ =

0. The scalar, φ, is convected within a moving fluid according to,

0
D

u
Dt t

 (1)

where u is the flow velocity vector. Phase-1, the liquid phase, is indicated by a positive level

set, φ > 0, and phase-2, the gas, by a negative level set, φ < 0. Since evaluating the jump in

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-0.03 -0.01 0.01 0.03 0.05

y/
d

Time (sec)

Numerical (We = 1.56)

Experiment (We = 1.59)

www.manaraa.com

11

physical properties using a step change across the interface leads to poor computational results,

the properties near an interface were defined using a smoothed Heaviside kernel function (See

Figure 5), Hε, given by [32]:

,0

1 1 ,() 1 sin
2

,1

H

 (2)

where ε is the interface half-thickness.

Figure 5: A plot of the smoothed Heaviside function that represents the transition of gas to liquid fluid properties

The fluid properties are then defined as:

1 2() () (1 ())H H (3)

1 2() () (1 ())H H (4)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

φ

()H

www.manaraa.com

12

The surface tension transition between the fluids is defined by:

𝛾𝜅𝛿(𝑛)𝒏 = 𝛾𝜅(𝜑)
𝑑𝐻𝜀(𝜑)

𝑑𝜑
∇(𝜑) (5)

Although the solution may be reasonably good in the immediate vicinity of the interface, the

distance field may not be correct throughout the domain since the varying fluid velocities

throughout the flow field distort the level set contours. Thus, the level set was corrected with

a re-distancing operation by solving the following PDE [44]:

() 1
d

S d

 (6)

where d is a scalar that represents the corrected distance field and τ is the pseudo time over

which the PDE is solved to steady-state. This may be alternately expressed as the following

transport equation:

()
d

w d S

 (7)

The so-called second scalar, d, is originally assigned the level set field, φ, and is convected

with a pseudo velocity, w , where,

()
d

w S
d

 (8)

and S(φ) is defined as:

1 ,

1 ,() sin

,
1

d

d

d d

d

S

 (9)

www.manaraa.com

13

where 휀𝑑 is the distance field interface half-thickness which, in general, may be different from

ε used in Eq. (2). Note that the zeroth level set, or interface, φ = 0, does not move since its

convecting velocity, w, is zero. Solving the second scalar to steady-state restores the distance

field to 1d but does not alter the location of the interface. The first scalar, φ, is then

updated using the steady solution of the second scalar, d.

 Sussman et al. [32] and Sussman and Fatemi [44] proposed an additional constraint to

be applied during the re-distancing step to help ensure the interface (φ = 0) does not move. It

has been found in the present work that imposing this constraint also improves the convergence

of the re-distancing step. The essence of the constraint is to preserve the original volume (i.e.,

mass) of each phase during the re-distance step.

 The re-distancing step of the LS method is of vital importance to the coalescence control

algorithm. It is necessary that the LS distance field contours return to the proper step after the

advection of the velocity field since the curvature of these contours is used in identifying

coalescence events.

CHAPTER 3 ALGORITHM DEVELOPMENT

 The previous work of Sanada et al. [2] shows that it was possible to simulate the thin

liquid film viscosity effects in a 2D simulation without any grid dependencies. It was

demonstrated that the film did not have time to drain before the bubble was repelled/bounced

as observed by Kirkpatrick and Lockett [16]. This simulation used a resolution of 150 x 150

elements which meant that there were 20 elements per bubble radius. The bubble diameter

ranged from 1.6-2.0 mm. The simulation domain used in computation used symmetry so that

www.manaraa.com

14

the calculations were only performed on half of the domain. If the largest bubble diameter were

used and the same resolution was applied to a small 3D domain of 20mm x 10mm x 10mm

used in PHASTA simulations, the resolution would be 400 x 200 x 200 (16M elements) which

is much finer than the finest resolution used in PHASTA of 160 x 80 x 80 (1M elements) for

a 5 mm diameter bubble. This much finer mesh for the small 3D domain is feasible but this

domain contains only two bubbles.

 The goal is to prevent coalescence or model the coalescence dynamics for hundreds of

bubbles. If the two bubble domain is taken as a standard, it would need to be 50 times larger

to allow for 100 bubbles resulting in a 1000mm x 10mm x 10mm domain. Using the resolution

from Sanada et al., this would create a resolution of 20000 x 200 x 200 (800M elements) for

one hundred 5 mm diameter bubbles. The computational cost would be much too high for a

simulation of this size. This means another method is required to provide the physics of film

drainage in the simulation of bubble coalescence.

3.1 Repulsive Force

 The method chosen to allow the use of a rougher resolution was to apply a force acting in

opposite directions to each bubble interface in order to prevent the coalescence event or slow

the process. This force represents the liquid film drainage process between the approaching

bubbles which cannot be modeled directly due to the high resolution requirements. Since

multiple factors affect the liquid film drainage (e.g. velocity, bubble approach angle) it is

necessary that this force will allow for coalescence events under certain flow conditions.

www.manaraa.com

15

To apply this force, it was decided to locally increase the surface tension within a

designated area of each bubble. The increase in surface tension was chosen because it was the

most computationally affordable method to prevent coalescence compared with the other

options (e.g. artificially increasing viscosity between the bubbles which requires much larger

mesh resolution). Since the surface tension is not adjusted uniformly, this results in net force

acting on each bubble in the direction opposite to the coalescence path (See Figure 6, Figure

7, and Figure 8).

Figure 6: Schematic of how the coalescence control is implemented and restricts coalescence.

www.manaraa.com

16

Figure 7: An initial time step with the coalescence control application volume shown as the white circle and the black

circles as the bubble interfaces

Figure 8: An later time step after surface tension changed with the coalescence control application volume shown as the

white circle and the black circles as the bubble interfaces

The surface tension was changed within a sphere centered at the event location found by

an identification process which is described later. The sphere uses a radius of five times the

level set interface half thickness. The shape of a sphere was chosen to automatically change

www.manaraa.com

17

the magnitude of the force based on the distance between the bubbles. This scales the force

acting on the bubbles based on the surface area that is subtended by the sphere. This seems to

leave the least amount of impact on the accuracy of the simulation since the properties values

are only changed in a local area around the event. Also, the change only lasts as long as the

bubbles are close to one another.

This force method allows for more cost efficient computation but comes with other

drawbacks. One issue is that the force may not accurately represent the distance in which

coalescence event take place. The initial thin liquid film distance is estimated to be 0.1 mm by

Kirkpatrick and Lockett [16] and the final film thickness is estimated to be 1 𝑥 10−5 𝑚𝑚 by

Kim and Lee [11]. In comparison to the estimated initial thickness, five times the interface

half thickness depends on the resolution and is only half the film distance. For a moderate

resolution and 5 mm diameter bubble, it is equal to 4.5 mm which is much larger than 0.1 mm.

This means that the slowing down of a coalescence event would begin much sooner than the

physical phenomena that is being modeled. Some work has been completed in adjusting the

algorithm to decrease this distance (See Section 5.2). Another problem with the model is that

the algorithm adjusts the shape of the bubbles. When the surface tension is increased in the

sphere, the bubble interfaces within the sphere begin to flatten. This may be physical when the

liquid film is very small, however this begins to occur once the bubbles enter the force

application volume. This can be an issue if it is assumed that the bubbles in the simulation are

perfectly spherical and the purpose of the simulation is to observe the effects of spherical

bubbles on the multi-phase flow.

www.manaraa.com

18

3.2 Location Identification

 One of the importance aspects of this algorithm is to identify the location of a coalescence

event. It is necessary to know the event location to be able to prevent or simulate the

coalescence properly. One simple method to find the location is to use the distance field

contours generated by the LS method in the PHASTA code. By using the distance field

contours, it makes it possible to identify not just one coalescence event but multiple events

simultaneously. However, it is beneficial to initially consider one coalescence event because it

explains some of the basic principles necessary to detect multiple coalescence events at one

time.

3.2.1 Single Event

 Since PHASTA uses the LS method to identify the bubble interface, there are level-set

contours throughout the whole domain. In the case of more than one bubble, multiple sets of

contours are spread throughout the whole domain and they will intersect with one another (See

Figure 9). At these intersections, the curvature of the contours drastically changes in magnitude

and sign. By choosing some of the different contours close to the bubble interface and limiting

curvature values, it is possible to record the coordinates of the intersection points in an array.

They are also tagged to identify the element positions in the array and that a set of coordinates

has been found. These coordinates roughly fill the area between two concentric circles centered

in between the approaching bubbles (See Figure 10).

www.manaraa.com

19

Figure 9: The distance field of the bubbles shown as the white contour lines with the black circles representing the bubble

interface

Figure 10: Location of high curvature where coordinates are used to generate average coalescence event coordinates

www.manaraa.com

20

 The current algorithm uses jumps in curvature between the first and sixth distance field

contour. The limiting curvature values used to determine the coordinates has been determined

empirically. A set of simple two bubble simulations, similar to the setup above, were used (See

Figure 10). Each simulation in the set used a different resolution with 5 mm bubbles. The

curvature values between the first and sixth distance field contour were recorded. A curvature

value close to each jump in curvature was then taken and plotted against the number of

elements across the bubble diameter (See Figure 11). A linear fit was then used to obtain an

equation to calculate the limiting curvature value. As a buffer, this limiting curvature value

was also multiplied by 1.45 to make sure intersecting contour coordinates were the only points

tagged.

Figure 11: Plot of chosen curvature values plotted against the number of elements across a 5 mm bubble diameter. A linear

fit was applied with the resulting equation and square of the correlation coefficient.

y = -180.83x + 1287.3
R² = 0.9854

-8500

-7500

-6500

-5500

-4500

-3500

-2500

-1500

15 20 25 30 35 40 45 50 55

C
u

rv
at

u
re

 V
al

u
e

Elements per Diameter

Curvature Transition

www.manaraa.com

21

 Since it is possible to run PHASTA in parallel, multiple processors will contain an array

with the recorded coordinates. These coordinate arrays from each processor are consolidated

into three separate arrays distinguished by axis direction. The tag array from each processor is

also consolidated into a single array. Each element of the coordinate arrays are summed and

averaged by using the summation of the elements in the tag array. The average coordinates are

the center coordinates for the two concentric circles generated by the intersecting contours.

Since it is assumed there is only one coalescence event, the center coordinates identify the

location of the event and can be used as the midpoint between the two approaching bubbles. A

summary of the process can be seen in the following block diagram (See Figure 12).

Figure 12: Summary of process to identify a coalescence event and calculate the average coordinates for the event.

Step 1: Check curvature to identify coordinates and tag array
location

Step 2: Consolidate each processor coordinate array into the proper
axis array or tag array

Step 3: Sum the elements of each axis array and the elements of the
tag array to get 3 total coordinate values and 1 tag value

Step 4: Calculate the average coordinates for each axis by dividing
the 3 total coordinate values by the tag value

www.manaraa.com

22

3.2.2 Multiple Events

 The previously described method works in the case of just one coalescence event but fails

to identify multiple events occurring simultaneously. To identify more than one location at a

time, an extension of the previously described method is required. A summary of the following

process can be seen in the block diagram of Figure 13. To determine if there are multiple events

occurring simultaneously, the average vector distance from the average coordinates to the

coalescence events coordinates is calculated. If this distance is larger than the contour diameter

distance, then it signifies there are multiple coalescence events in the domain.

 If it has been determined that multiple events are occurring simultaneously, it is necessary

to sort and tag the coalescence events specific to each event. For multiple coalescence events,

the average coordinates found from all of the intersecting contour coordinates is located at a

point between all of the different coalescence events. This location is not necessarily centered

between all the events because the averaging process used in steps 3 and 4 do not use any

weights based on the number of coordinates recorded from each event. By knowing this

location and the coordinates from each of the coalescence events, it possible to generate vectors

that start at this averaged location and extend to each coalescence event coordinate.

 To identify each coalescence event separately, two different calculated criteria are used to

consolidate the coordinates to their proper coalescence event. The first criteria used is the

distance of each vector originating from the averaged location and the coalescence event

coordinates which was previously calculated. For each coalescence event, the vector with the

largest magnitude is found. For a coordinate to be considered part of the specific event

belonging to the maximum length vector, it must be located within a distance equal to or less

www.manaraa.com

23

than the diameter of the farthest chosen level set contour for event identification. The distance

between an event coordinate and the coordinate of the maximum length vector can be

calculated by using vector addition and then calculating the magnitude of the resulting vector.

If the resulting vector is less than or equal to the diameter of the farthest chosen contour for

the event identification, then there is a high probability that the coordinate belongs to the

specific coalescence event.

Figure 13: Summary of process to find the average coordinates for each specific coalescence event during multiple

coalescence events.

Step 5: Check for multiple coalescence events using average vector distance

Step 6: Find the maximum length vector

Step 7: Calculate the angle between the maximum length vector and every other
vector

Step 8: Calculate the maximum possible angle for the different arrangements

Step 9: Use the vector distance criteria and maximum angle critieria to sort and
tag the event coordinates

Step 10: Use the single event averaging process for each sorted event

Step 11: Iteratively repeat until all coordinates tagged or the maximum estimated
coalescence event is exceeded

www.manaraa.com

24

 Since it is not possible to assuredly determine that a coordinate belongs to a specific

coalescence event using the vector comparison, the angle between each vector and the

maximum length vector for a specific coalescence event is used as the second criteria. By using

the farthest chosen contour diameter from which coordinates are tagged, it is possible to

calculate the maximum angle that would exist between the longest vector for a specific

coalescence event and another vector resulting in a triangle with the contour diameter and

maximum length vector. A geometric representation of this scenario can be seen in Figure 14.

Figure 14: Triangle formed by three vectors during multi-event coalescence identification.

Since the average location is not centered between all the coalescence events, there are three

separate arrangements of which side of the above triangle represents the maximum length

vector, the contour diameter, and the other vector finishing the triangle. The law of cosines is

www.manaraa.com

25

used to determine the maximum angle at which the vectors can be positioned for each

arrangement (See Eqs. (10), (17)).

Arrangement 1: Sides c and a are known

 The first arrangement occurs when side c represents the maximum length vector and side a

represents the contour diameter. The form of the law of cosines used for this arrangement is

the following:

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 ∗ cos(𝛼) (10)

Since the largest possible value of 𝛼 is needed as a criteria, the length of 𝑏 must be determined

when 𝛼 is maximized. To do this, Equation (10) is solved for 𝛼 and the first derivative of 𝛼

is taken with respect to 𝑏 (See Eqs. (11) and (12)).

α = cos−1 (
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
) (11)

𝑑𝛼

𝑑𝑏
= −

1

√1 − (
𝑏2 − 𝑐2 + 𝑎2

2𝑏2𝑐
)

2

(
𝑏2 − 𝑐2 + 𝑎2

2𝑏2𝑐
)

 (12)

In order to maximize 𝛼,
𝑑𝛼

𝑑𝑏
 is set equal to zero. From Equation (12), there are two possibilities

that would make
𝑑𝛼

𝑑𝑏
 equal to zero:

−
1

√1 − (
𝑏2 − 𝑐2 + 𝑎2

2𝑏2𝑐
)

2

= 0

 (13)

www.manaraa.com

26

(
𝑏2 − 𝑐2 + 𝑎2

2𝑏2𝑐
) = 0 (14)

 For Equation 4 to be true, 𝑏 must be equal to infinity. This does not make sense for a finite

triangle which means Equation 5 must be used. This equation is solved for 𝑏 to calculate the

length of 𝑏 to maximize 𝛼:

𝑏 = √𝑐2 − 𝑎2 (15)

Equation 6 is just a modified form of the Pythagorean Theorem which means that 𝛼 is

maximized when vectors 𝑎, 𝑏, and 𝑐 form a right triangle. Since the vectors form a right

triangle, 𝛼 can be calculated using a basic trigonometric function:

𝛼 = cos−1 (
𝑏

𝑐
) (16)

Arrangement 2: Sides c and b are known

 Within this arrangement, there are two possible setups. The first occurs when the maximum

length vector is still acting as 𝑐 but the farthest chosen contour diameter is represented by side

𝑏. For this arrangement, the angle 𝛽 is maximized instead of the angle 𝛼. For this arrangement,

the following form of the law of cosines is used:

𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 ∗ cos(𝛽) (17)

The same process is followed as in Arrangement 1 but
𝑑𝛽

𝑑𝑎
 is found in order to maximize 𝛽.

When calculated, you get a function of the same form as Equation 3. Here
𝑑𝛽

𝑑𝑎
 is set equal to

zero which results in the same type of possibilities as discussed in Arrangement 1. Using the

second possibility, the length of side 𝑎 is determined:

www.manaraa.com

27

𝑎 = √𝑐2 − 𝑏2 (18)

Again, this equation is an alternate form of the Pythagorean Theorem. This means that simple

trigonometric functions can be used to solve for the maximum of angle 𝛽:

𝛽 = sin−1 (
𝑏

𝑐
) (19)

 The second setup of this arrangement is where the contour diameter acts as side 𝑐 and the

maximum length vector acts as side 𝑏. In this instance, the average coordinate may be located

within the sixth contour of one of the bubbles. This represents a situation where this

coalescence event generates many more event coordinates than other events. In the extreme, it

is possible that the average coordinates could be at the center of the coalescence event.

However, it is assumed that the number of event coordinates does not significantly outweigh

other events so it is assumed that the maximum angle of 𝛾 occurs when the length of a line

drawn from point 𝐶 in Figure 14 and perpendicular to side 𝑐 is equal to the bubble radius plus

one contour distance (See Figure 15).

 With this assumption, it is not possible to assume that the triangle formed is a right triangle.

The line drawn between point 𝐶 and perpendicular to side 𝑐 can be used since this forms two

right triangles. This means that the angle 𝛾 and the side 𝑐 can be broken into two pieces:

𝛾 = 𝜃 + 𝜙 (20)

𝑐 = 𝑙 + 𝑚 (21)

This means that 𝜃 and 𝜙 can be found by the following equations:

𝜃 = cos−1 (
𝑑

𝑏
) (22)

www.manaraa.com

28

𝑙 = 𝑏 ∗ sin (𝜃) (23)

𝑚 = 𝑐 − 𝑙 (24)

𝜙 = tan−1 (
𝑚

𝑑
) (25)

The angle 𝛾 can then be used as the maximum angle between the maximum length vector and

any other vector.

Figure 15: Schematic of triangle to calculate the angle gamma when the sides b and c are known.

 Now that the maximum angles can be calculated, it is necessary to calculate the angles

between the maximum length vector and every other vector in order to compare the angles as

the second criteria. To calculate the angles, the definition of the dot product between two

vectors is used:

𝜓𝑖 = cos−1 (
𝑐 ∙ 𝑣𝑖

‖𝑐‖‖𝑣𝑖‖
) (26)

www.manaraa.com

29

where 𝑐 is the largest length vector, 𝑣𝑖 is any other vector, and 𝜓𝑖 is the angle between the

largest length vector and any other vector.

 Once each of the values for the criteria have been calculated, they can be used to sort and

tag the event coordinates specific to each coalescence event. This process will occur iteratively

until all event coordinates have been tagged or the maximum number of estimated coalescence

events has been exceeded. Once all the iterations have completed, the same averaging process

used for a single coalescence event is used for each tag separately. This results in an array of

center coordinates for each set of concentric circles generated by the different coalescence

events and therefore identifies each event separately.

3.3 Drainage Time

 Once the coalescence event has been identified and the force is implemented, it is necessary

to track the amount of time the force has been active. The tracked time can then be compared

to a coalescence time model [7] that estimates the total coalescence time. Once the tracked

time has exceeded the estimated total coalescence time, the force is removed, signifying the

liquid film has had sufficient time to drain, and the bubbles are allowed to coalesce.

 The drainage time uses a model that is based on the equivalent bubble radii (𝑟𝑖𝑗), the density

of the liquid (𝜌𝑙), the surface tension (𝜎), and the initial and final film thickness (ℎ𝑜 , ℎ𝑓):

𝑡𝑖𝑗 = √
𝑟𝑖𝑗

3𝜌𝑙

16𝜎
ln (

ℎ𝑜

ℎ𝑓
) (27)

The equivalent radius is found by the following equation:

www.manaraa.com

30

𝑟𝑖𝑗 =
1

2
(

1

𝑟𝑏𝑖
+

1

𝑟𝑏𝑗
)

−1

 (28)

where the indices 𝑖, 𝑗 represent different bubbles. The initial film thickness is estimated as 1 ∗

10−4 𝑚 by Kirkpatrick and Lockett [16] and the final film thickness is usually taken to be

1 ∗ 10−8 𝑚 [11].

 To track the coalescence events, it is necessary to develop several logic loops in order to:

identify new coalescence events, keep track of the continuing events that have and have not

exceeded the model time limit, and determining when events have ended whether through

coalescence or the bubbles moving away from (bouncing off) one another. Since each event is

not assigned the same event number after each iteration, the distance between the average

coordinates from the previous iteration and the current iteration are used to identify which

events are the same. The distance between the average coordinates will always be quite small.

The default values for the average coordinates are used to help identify when any new and

ending events occur.

CHAPTER 4 SIMULATIONS

 In order to test the functionality and capability of the algorithm and its cost, three different

types of simulations were used and performed. Each of these simulations was performed using

the PHASTA code with the coalescence control algorithm added in as a functional capability.

www.manaraa.com

31

4.1 Two Bubble Coalescence Prevention

 The first simulation consists of how the algorithm handles when there is only one

coalescence event occurring in the domain. The time tracking portion of the algorithm was not

tested in this simulation. The domain size was 40 mm x 20 mm x 20 mm with the x-y planes

acting as walls. There were three bubbles placed in the domain: (i,ii) two bubbles with a 5 mm

diameter and (iii) a third with a 6 mm diameter. The bubbles were placed at varied distances in

the x-direction along the center line between two parallel plates. Gravity was used to provide

a buoyance force on the bubbles to cause them to flow while a pressure gradient was applied

to the liquid to keep it stationary within the domain. A finite element mesh containing 2M

hexahedral elements. This means that the 5 mm diameter bubbles were resolved with at least

25 elements across its diameter. For more information on the domain and simulation

parameters, see Figure 16 and Table 1.

 The simulation was used for two tests. The first test was performed without using the

coalescence control algorithm. The second test was performed with the coalescence control

active. To analyze how the algorithm handles a single event, only the interaction between the

two 5 mm diameter bubbles is considered.

 In the first test, a coalescence event was observed in iteration 870 between the two 5 mm

diameter bubbles (See Figure 17 Top). When the second test was performed, the coalescence

control algorithm identified the event and locally adjusted the surface tension around the center

of the event coordinates. Comparing the visualization of the same simulation time as in the

first test, the coalescence of the two 5 mm bubbles was prevented (See Figure 17 Bottom).

www.manaraa.com

32

Figure 16: Initial setup to test the algorithm for a single coalescence event identification and prevention.

Table 1: Overview of simulation parameters for the single coalescence prevention simulation.

Parameter

Liquid water

Gas air

Pressure, Pa 0

Temperature, °C N/A (0)

Liquid Density, kg/m3 997.17

Gas Density, kg/m3 1.161

Liquid viscosity, kg/m-s 2.67E-03

Gas viscosity, kg/m-s 1.86E-02

Body Force, m/s² 0.5

Body Force Pressure Gradient, Pa/m 498.585

 As for computational cost, the simulation without the coalescence control finished 710

iterations in about 2 hours. When the coalescence control was activated, the simulation finished

710 iteration in about 2.2 hours. This shows a 10% increase in cost of running with the

www.manaraa.com

33

coalescence control. Even though the coalescence control increases the computational cost,

this increase is cost is manageable and willing trade off to the resolution required for

coalescence viscosity effects to be observed.

(a)

(b)

(c)

Figure 17: Visualization of the simulations for the single coalescence events at iterations: (a) 20, (b) 400, and (c) 870. Top:

The simulation performed without the coalescence control algorithm. In iteration 870, the 5 mm bubbles have begun to

coalesce. Bottom: The simulation performed with the coalescence control algorithm. In iteration 870, the coalescence event

has been prevented.

4.2 Multi-Bubble Coalescence Prevention

 In order to test the coalescence control algorithm’s ability to handle multiple events as well

as turbulence, a large simulation was created. This simulation is based on one reported on by

Bolotnov and Podowski in 2012 [42]. The simulation consists of a bubbly gas flow in

turbulent flow conditions with an equivalent 𝑅𝑒 ≈ 12,000. The flow is between two parallel

places and a total of 32 bubbles were placed randomly throughout the domain. The mesh

consisted of about 10 million hexahedral elements resulting in approximately 18 elements

www.manaraa.com

34

across the diameter of the bubbles. For more information on the simulation parameters and the

domain, see Figure 18 and Table 2.

Figure 18: Overview of the simulation domain dimensions and axis orientation. The shaded planes represent walls.

 The described simulation was tested twice: one without using the coalescence control

algorithm and one with the coalescence control algorithm active. The starting point for these

tests started at iteration 7800 (See Figure 19). To determine if bubble coalescence events

have occurred, later iterations were chosen and the number of bubbles was counted. The

iterations that were chosen were matched based on time within the simulation. The times

2δ = 2.0

x
z

y

g

2π

2π/3

www.manaraa.com

35

Table 2: Overview of simulation parameters for the multi-bubble coalescence prevention simulation.

Parameter

Pressure, bar 10

Liquid water

Gas air

Temperature, °C 27

Liquid Density, kg/m3 996.5

Gas Density, kg/m3 11.636

Liquid viscosity, kg/m-s 8.514∙10-4

Gas viscosity, kg/m-s 1.858∙10-5

Figure 19: Initial setup at iteration 7800 of the bubbly flow in turbulent conditions. There are 32 bubbles randomly

placed throughout the domain.

chosen represent two, four, and five full flow-throughs of the domain where a single flow-

through means a bubble has moved through the domain to return to its initial position on the

x-axis. For the test when the coalescence control was not used, it can be seen in iteration 15600,

only 25 bubbles remained in the domain. Then in iteration 23800, only 22 bubbles remained,

www.manaraa.com

36

and in iteration 27800, only 19 bubbles remained. (See Figure 20 Top). This signifies that there

were multiple coalescence events after only two flow-throughs. More events continued to

follow in subsequent flow-throughs. For the second test using the coalescence control

algorithm, in iterations 15000, 22600, and 26800, 32 bubbles remained in the domain instead

of 25, 22, or 19 bubbles. (See Figure 20 Bottom). This shows that 13 coalescence events that

occurred in the first test were prevented by the coalescence control algorithm. This means that

the algorithm is performing properly for turbulent conditions with multiple bubbles. The

computational cost for these simulations was also analyzed. The simulation without the

coalescence control finished 2150 iterations in 3 hours. When the coalescence control was

activated, the simulation finished 2150 iterations in 3.8 hours. This shows a 25% increase in

cost of running with the coalescence control. This computational cost is higher than the single

coalescence event but is to be an expected increase. However, even this increase is cost is more

desirable over the resolution required for coalescence viscosity effects to be observed.

www.manaraa.com

37

(a)

(b)

(c)

Figure 20: Visualization of both 32 bubble simulation at multiple iterations. Top: No coalescence control, Iterations (a)

15600, (b) 23800, (c) 27800. Bottom: Coalescence control active, Iterations (a) 15000, (b) 22600, (c) 26800.

www.manaraa.com

38

4.3 Coalescence Time Tracking

 The third test simulation was designed to test the coalescence control algorithm’s time

tracking model. This simulation design consists of a single bubble below a free surface of gas

placed at the top of the domain. The domain size was 20 mm x 35 mm x 20 mm. The bubble

diameter was 5 mm and the center point of the bubble was placed 20 mm below the free surface

(See Figure 21). Gravity was used to provide a buoyance force to force the bubble to approach

the free surface. A wall was placed on the top and bottom of the domain normal to the gravity

and buoyance force. The mesh was made of 0.9M hexahedral elements resulting in

approximately 20 elements across the diameter of the bubble. For more information on

simulation parameters, see Table 3.

Table 3: Overview of simulation parameters for the time tracking tests.

Parameter

Liquid water

Gas air

Pressure, Pa 0

Temperature, °C N/A (0)

Liquid Density, kg/m3 997.17

Gas Density, kg/m3 1.161

Liquid viscosity, kg/m-s 2.67E-03

Gas viscosity, kg/m-s 1.86E-02

Body Force, m/s² 1

Body Force Pressure Gradient, Pa/m 997.17

 Two simulations were performed for this test (See Figure 22). Both tests were performed

with the coalescence control portion of the code active. However, in the second simulation, the

www.manaraa.com

39

time tracking portion of the coalescence control was active. The first test was performed

without using the time tracking portion of the code. It can be seen in iteration 800 that the force

is implemented. Later, in iteration 1150, the simulation shows that the coalescence event has

Figure 21: Initial setup for the bubble rising towards a free surface. The simulation was used to test the time tracking

portion of the algorithm.

been prevented (See Figure 22 Top). For the test when the time tracking portion of the code

was active, it can be seen that the force is implemented in the same iteration (800) as the first

test. However, by comparing iteration 920 between the simulations, it can be seen that the force

is removed in the second simulation. By iteration 1150, the bubble and free surface have

coalesced in the second simulation (See Figure 22 Bottom). The second simulation

demonstrates that the time tracking portion of the code is properly removing the application

volume after the maximum coalescence time has been exceeded.

www.manaraa.com

40

(a)

(b)

(c)

Figure 22: Visualization of both simulations at iterations (a) 800, (b) 920, and (c) 1150. Top: Simulation run without using

the time tracking portion of the algorithm. Bottom: Simulation that uses the time tracking portion of the algorithm.

www.manaraa.com

41

 A new capability was used in these simulations so the computational cost changed from the

previous simulations. Without the time tracking algorithm active, the simulation finished 1500

iterations in 2.33 hours. When the tracking algorithm was active, the simulation finished 1500

iterations in 2.36 hours. This signifies only a 1% increase in the running cost of adding the

time tracking portion of the algorithm. This running cost increase is insignificant to the cost of

running the rest of the coalescence control algorithm and is therefore an easy tradeoff.

CHAPTER 5 VERIFICATION AND VALIDATION

5.1 Mesh Study

 To test whether the algorithm was calculating the average coordinates correctly irrespective

of the mesh, a simple domain of 20mm x 15mm x 15mm was created with two 5 mm diameter

bubbles (See Figure 23). Only gravity in the negative x-direction was used to generate a

buoyancy force to move the bubbles. The distance between the bubble centers was small

enough to activate the coalescence control algorithm. Several different cases were run where

the mesh resolution was increased from 20 elements per diameter (288K discrete elements and

1.8M parasolid elements) to 40 elements across diameter (2.3M discrete elements and 13.3M

parasolid elements). The distance between the bubble centers was kept constant. The value of

the interface half-thickness input into PHASTA was also unchanged with the increasing

resolution. Two separate simulations were created for each case: one mesh contained discrete

hexagonal elements while the other contained adaptive tetrahedral elements. The same

parameters were used for both simulations (See Table 4).

www.manaraa.com

42

Figure 23: Initial setup of the simulation used in the mesh study. The domain contains two 5 mm bubble.

Table 4: Overview of simulation parameters for both mesh types.

Parameter

Liquid water

Gas air

Pressure, Pa 0

Temperature, °C N/A (0)

Liquid Density, kg/m3 997.17

Gas Density, kg/m3 1.161

Liquid viscosity, kg/m-s 2.67E-03

Gas viscosity, kg/m-s 1.86E-02

Body Force, m/s² 0.5

Body Force Pressure Gradient, Pa/m 498.585

 The reason to use two different mesh types comes from the fact that each mesh type is used

for different situations. The discrete mesh uses hexagonal elements within a structured grid

(See Figure 24 (a)). This grid is simple and efficient grid but unable to represent shapes other

than a cube. On the other hand, a parasolid mesh uses tetrahedral elements in an unstructured

mesh (See Figure 24 (b)). This allows non-cube shapes to be simulated but may result in more

www.manaraa.com

43

complex and less efficient grid. The coalescence control algorithm will be used in both meshes

and therefore a mesh study must be performed using both meshes.

5.1.1 Discrete Mesh

 For this test, the interface half-thickness was kept at 4.5 ∗ 10−4 which is equal to 1.8 times

a 20 point per diameter resolution. The bubbles in the diameter were setup such that the

midpoint between them was set at (1.0E-2, 7.5E-3, 7.5E-3). Each simulation was run for five

iterations and the coalescence event coordinates reported were taken from the third iteration.

(a)

(b)

Figure 24: Visualization of a (a) discrete mesh and a (b) parasolid mesh.

www.manaraa.com

44

The third iteration was chosen to allow the algorithm to perform a couple of iterations while

not waiting too long such that the bubbles moved sufficiently to drastically move the

coalescence event location. These coalescence event coordinates can be seen in Table 5. Each

set of coordinates was compared to the exact midpoint value and the normalized based on the

distance between the center points of the bubble (See Table 6).

Table 5: Contains the average coordinates for different discrete domain resolutions. It also contains the exact geometric

coordinates and distance between bubble centers.

Reported Center Points for Coalescence Events in Discrete Simulation

3rd Iteration Coordinates
Exact

Bubble Center

Distance 20 Pts. 25 Pts 30 Pts. 35 Pts. 40 Pts.

X Coord 1.01E-02 1.01E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 9.00E-03

Y Coord 7.49E-03 8.08E-03 8.32E-03 7.89E-03 8.21E-03 7.50E-03 9.00E-03

Z Coord 7.49E-03 7.11E-03 6.85E-03 7.07E-03 7.38E-03 7.50E-03 9.00E-03

Table 6: Contains the error between the reported coordinates and the exact geometric coordinates normalized by the

distance between bubble centers.

Percent Error Normalized by Distance between Bubble Centers

 20 Pts. 25 Pts 30 Pts. 35 Pts. 40 Pts.

X Coord 1.006611539 0.67252167 0.409646053 0.510499203 0.451368364

Y Coord 0.081854474 6.452301016 9.107695555 4.34685935 7.86000409

Z Coord 0.086528576 4.298314523 7.271514561 4.79368714 1.344575277

 Among all the cases, the highest error was seen to be about 9%. The largest errors were also

only seen for the y and z coordinates. A possible explanation for this result can be found when

considering that the intersecting contours of the two bubbles are found in the y-z plane. It is

possible that the concentration of points found around the intersecting contours was not evenly

www.manaraa.com

45

distributed. This would cause a skew in the average y and z coordinates without affecting the

x coordinate.

 To determine whether the errors affect the outcome in later iterations, the 20 elements and

40 elements across the 5 mm bubble diameter simulations were run longer. These simulations

were performed for 500 iterations each. The 250th iteration was chosen for the 20 element

resolution since the simulation matched the 500th iteration of the 40 element resolution. As

expected for the 20 elements per diameter resolution, the coalescence event was prevented (See

Figure 25 (a)). It can also be seen in Figure 25 (b) that the coalescence event was prevented in

the 40 element resolution as well. This shows that the errors in the higher resolution are

insufficient to cause the algorithm to work improperly.

(a)

(b)

Figure 25: Visualization of the discrete mesh study for the 20 element and 40 element resolutions. Left: The 20 element

resolution at iteration 250. Right: The 40 element resolution at iteration 500.

www.manaraa.com

46

5.1.2 Parasolid Mesh

 For this test, the interface half-thickness was kept at 3.0 × 10−4 which is equal to 1.8 times

a 30 point per diameter resolution. The bubbles in the diameter were setup such that the

midpoint between them was set at (1.0E-2, 0, 0). Again, each simulation was run for five

iterations and the coalescence event coordinates reported were taken from the third iteration.

These coalescence event coordinates can be seen in Table 7. Each set of coordinates was

compared to the exact midpoint value and normalized based on the bubble center distance (See

Table 8).

Table 7: Contains the average coordinates for different parasolid domain resolutions. It also contains the exact geometric

coordinates and distance between bubble centers.

Reported Center Points for Coalescence Events (30 Pts. Eps.)

3rd Iteration Coordinates
Exact

Bubble

Center

Distance 20 Pts. 25 Pts 30 Pts. 35 Pts. 40 Pts.

X Coord 1.01E-02 1.00E-02 1.00E-02 1.01E-02 1.01E-02 1.00E-02 7.20E-03

Y Coord 5.87E-05 4.23E-05 4.50E-05 3.08E-04 6.15E-04 0.00E+00 7.20E-03

Z Coord 1.18E-05 -1.69E-08 -4.81E-05 7.92E-04 1.21E-03 0.00E+00 7.20E-03

Table 8: Contains the error between the reported coordinates and the exact geometric coordinates normalized by the

distance between bubble centers.

Percent Error Normalized by Distance between Bubble Centers

 20 Pts. 25 Pts 30 Pts. 35 Pts. 40 Pts.

X Coord 1.342338337 0.390327151 0.554685182 0.934134495 0.843749435

Y Coord 0.815865397 0.587218111 0.625412608 4.271283867 8.547559288

Z Coord 0.163391908 0.000234887 0.667659593 11.00519116 16.77109136

www.manaraa.com

47

 Among all the cases, the highest error was seen to be about 16%. The largest error were

only seen in the y and z coordinates. This result shows high accuracy with the expected results.

The higher error in the y and z coordinates can be explained by the same reasoning in the

discrete domain. The y and z average coordinates are generated from intersecting contours in

the y-z plane. It is possible that the concentration of points found around the intersecting

contours was not evenly distributed. This would cause a skew in the average y and z

coordinates without affecting the x coordinate.

 To determine whether the errors affect the outcome in later iterations, the same process

was used as with the discrete mesh. The two simulations of 20 elements and 40 elements across

the 5 mm bubble diameter were performed for 500 iterations each. Visualizations of each case

was chosen based on matching time within the simulation (See Figure 26). For these two

simulations, the interface half-thickness was not a proper match. However, for both

simulations, the coalescence event was still prevented (See Figure 26). This shows that the

errors due to a mismatched interface half-thickness are insufficient to make the algorithm work

improperly.

5.2 Minimum Liquid Film Thickness during Coalescence Control

 As mentioned earlier, the initial distance estimated by Kickpatrick and Lockett [16] was

0.1 𝑚𝑚. However, in our moderate resolution simulations, the initial distance is ten times the

interface half-thickness which is equal to 4.5 mm. This value is much larger than desired and

means the coalescence control process will start sooner than expected. To see if this distance

could be reduced, a simple test was performed using the same simulation of the bubble rising

www.manaraa.com

48

towards a free surface simulation (See Section 4.3). The same domain and simulation

parameters were used (See Figure 21 and Table 3).

(a)

(b)

Figure 26: Visualization of the parasolid mesh study for the 20 element and 40 element resolution. (a) The 20 element

resolution at iteration 280. (b) The 40 element resolution at iteration 500.

 In the original algorithm, the identification of a coalescence event starts once the sixth

distance field contours begin to intersect (See Figure 9). This means that the application

volume is implemented before the bubbles begin to enter the volume. However, to reduce the

initial coalescence distance, there are two options: increase the resolution or change the

distance field contour that activates coalescence control. Since the purpose of the coalescence

control algorithm is to reduce the required resolution to prevent coalescence, changing the

distance field contour was investigated. For this test, three simulations were performed: (i)

using the third distance field contour, (ii) using the fourth distance field contour, and (iii) using

www.manaraa.com

49

the original sixth distance. In order to be successful, the algorithm using closer contours still

needed to prevent the coalescence event. The time application portion of the algorithm was

not used for these tests since it was necessary to prevent the coalescence event for the test.

 The simulation setup and parameters were the same as those used in the coalescence time

tracking section (See Section 4.3). For distance field contours closer than the fifth contour, the

initial thickness for coalescence then becomes twice the distance to the specific contour. The

distances for the three different tests can be seen in Table 9. When the original algorithm is

used, it can be seen that the force is implemented in iteration 880 and the coalescence event

was prevented by iteration 940 (See Figure 27 (a)). Changing the algorithm to activate at the

fourth distance field contour was performed next. It can be seen in iteration 880 that the force

is implemented. After the force had been implemented, it can be seen in iteration 940 that the

coalescence event is prevented (See Figure 27 (b)). This means that the initial coalescence

thickness could be reduced to 3.6 mm.

Table 9: Initial liquid film thickness based on which distance field contour is used to activate the coalescence control

algorithm.

Initial Liquid Film Distance for Coalescence Events

Identification Contour Initial Thickness (mm) 5th Contour Application Diameter

3rd 2.7 4.5

4th 3.6 4.5

6th 4.5 4.5

 Lastly, the algorithm was changed to activate on the third distance field contour. It can be

seen in iteration 880 that the force activates to prevent the coalescence event. However, in

www.manaraa.com

50

iteration 940, the timing of the force application and force strength was insufficient in

preventing coalescence between the bubble and free surface (See Figure 27 (c)). This shows

that the third distance field contour is insufficient in preventing coalescence events. Even

though it was unable to prevent the coalescence in this simulation, it may still be possible to

make this algorithm perform successfully. To do this, the magnitude of the force must be

increased which results in adjusting the surface tension within the application volume. This

means the distance could be reduced even further. This shows that even though the original

algorithm cannot accurately represent the initial coalescence thickness, it is possible to reduce

the distance by adjusting some of the parameters used in the algorithm.

5.3 Initial and Final Bubble Diameter Distribution

 The first validation test planned for the algorithm uses a large simulation of bubbles to look

at the initial and final bubble diameter distribution. The simulation that will be used is the same

one with bubbles in turbulent flow conditions used for the multi-bubble coalescence prevention

(See Section 4.2). The same domain setup and simulation parameters were used (See Figure

18 and Table 2). The distribution of bubble diameters and the initial and final void fractions

will be compared to experimental results obtained by Colin et al. [20, 21]. Unlike when the

multi-bubble coalescence prevention was tested, this simulation will be performed using the

time tracking portion of the code as well. To match the experimental results obtained by Colin

et al, the number of domain flow-throughs will be tracked to match the 2 m length used in the

experimental apparatus.

www.manaraa.com

51

(a)

(b)

(c)

Figure 27: Visualization of liquid film thickness simulations at iteration 880 and 940. (a) Original algorithm. (b) Force

activates at fourth contour. (c) Force activates at the third contour.

www.manaraa.com

52

5.4 Bubble Approach Velocity Effect on Coalescence

 The second validation test to be performed for the algorithm uses the single bubble rising

towards a free surface. This simulation design was based off the same setup as the simulation

in coalescence time tracking testing (See Section 4.3 and Figure 21). However, the simulation

will be modified to match an experiment performed by Kirkpatrick and Lockett [16]. A 5 mm

diameter bubble will be placed in a liquid domain below a free surface of gas at the top of the

domain. Two different distances below the free surface will be used: 45 cm and 67 cm. Gravity

will be used to provide a buoyance force to force the bubble to approach the free surface. A

wall will be placed on the top and bottom of the domain normal to the gravity and buoyance

force. The mesh is made of 8.5M or 12.6M hexahedral elements resulting in approximately 18

elements across the diameter of the bubble. The Morton number (Mo) will be used to relate

the adjusted simulation properties to the experimental properties (See Table 10).

Table 10: Overview of experiment and simulation parameters for the bubble approach velocity effect on coalescence

simulation.

Parameter Experimental Simulation

Liquid water water

Gas air air

Pressure, Pa 0 0

Temperature, °C N/A (0) N/A (0)

Liquid Density, kg/m3 997.17 997.17

Gas Density, kg/m3 1.161 1.161

Liquid viscosity, kg/m-s 2.67E-03 3.57E-03

Gas viscosity, kg/m-s 1.86E-02 1.86E-02

Body Force, m/s² 9.81 1

Body Force Pressure Gradient, Pa/m 9782.24 997.17

Surface Tension, N/m^2 7.28E-02 5.00E-02

www.manaraa.com

53

 These tests will be performed with the time tracking portion of the code active. The

results will be compared to the experimental results of Kirkpatrick and Lockett [16]. They

observed that for bubble to free surface distances less than 61 cm the coalescence process

was almost immediate. However, for distances larger than 61 cm, the coalescence process

was much longer. By the time the bubble first makes contact with the free surface, it had

gained sufficient speed to bounce off the free surface before coalescing. The coalescence

time model taken from Prince and Blanch [7] did not take bubble approach velocity into

account. However, testing this capability of the algorithm will help determine which

simulations can be expected to provide proper physical results.

CHAPTER 6 CONCLUSION

6.1 Discussion

 An algorithm was developed for the LS method that represents the effect of liquid film

drainage during a coalescence event. Instead of using a high resolution grid to simulate the

viscous drainage of the film, it prevents or slows the coalescence process by applying a force

to both bubbles. The force is generated by locally changing the surface tension on a portion of

each interface. This method was tested for single and multiple coalescence events in both

laminar and turbulent flow regimes. In both cases, the algorithm successfully identified

coalescence events and prevented the bubbles from coalescing.

 A portion of the developed algorithm also tracks the amount of time a coalescence event

has been active. This tracking time is then compared to a coalescence time model developed

by Prince and Blanch [7]. The time tracking capability of the code was tested using a bubble

www.manaraa.com

54

rising towards a free surface. The time tracking portion of the code successfully removed the

locally modified surface tension allowing the bubble and free surface to coalesce.

 We have observed some non-critical issues with the algorithm. One of these issues pertains

to the deformation of the bubble interface. When the surface tension is changed, that portion

of the bubble begins to flatten. In some situations, this is a physical process (e.g. representing

the effect of the liquid film and the other interface on the bubble). However, the algorithm

applies the changed surface tension before the liquid film is sufficiently thin to cause the

flattening of the surface. Another issue is related to the initial film thickness that develops

between the bubbles. With a moderate resolution, the initial thickness generated by the

coalescence control algorithm is equal to 4.5 mm. This is much larger than the estimated

thickness of 0.1 mm by Kirkpatrick and Lockett [16]. However, it has been demonstrated that

the initial thickness can be reduced by adjusting parameters within the coalescence control

algorithm. For multiple bubble simulations it is way more important to maintain the correct

coalescence probability then to correctly resolve the thinnest film when the bubbles bounce off

each other. Even with these minor issues, the presented coalescence control algorithm is the

only feasible way to simulate multiple bubble behavior using LS approach at large scale.

6.2 Future Work

 Even though the coalescence control algorithm has been tested and is working properly,

there is still some development and testing that needs to be done. One of the first issues with

the algorithm that needs addressed is how the coalescence control algorithm interacts with

periodic boundary conditions. In some early simulations, when a coalescence event would

www.manaraa.com

55

travel through a periodic boundary, some of the area near the boundary retains the changed

surface tension. The changed surface tension would then change the trajectory of some of the

bubbles as they pass through the boundary. The problem is probably caused by the way the

boundary values are updated after each iteration. More work would need to be done in finding

out how the changed surface tension and boundary conditions interact.

 Another possible change in the algorithm that can make it more robust is developing an

analytical model to determine the expected curvature for intersecting contours. The current

method was developed empirically by analyzing the curvature values for a simple two bubble

simulation. Multiple cases were performed where each the resolution was adjusted between

each case. There is a significant jump in magnitude for curvature values where the distance

field contours intersect. A curvature value close to the curvature jumps was chosen for each

resolution. These values were then plotted against the resolution and an equation was generated

using a linear fit (See Figure 11). The algorithm then uses this equation and multiplies the

resulting values by 1.45 for a buffer to generate the limiting curvature values. Developing the

analytical analysis will make the identification of the coalescence event locations more

accurate.

 One aspect of the algorithm that can be explored even further is reducing the initial

thickness of the coalescence event. Some work has already been done investigating this change

(See Section 5.2). More effort can be devoted to this in optimizing which contour may be used

and how the surface tension needs to be changed in order to prevent the coalescence event.

Another option that could be used is adjusting the shape of the application volume. Instead of

using a sphere, as the application volume, an ellipsoid or rectangular prism could be used. A

www.manaraa.com

56

third option would be to change the surface tension profile across the application volume.

Currently, the surface tension is adjusted uniformly throughout the application volume. Instead

of using a constant profile, a quadratic or exponential profile could be used. This would then

reduce effect on the coalescence process until both bubbles have moved farther into the

application volume. This would then allow the force to be implemented within a volume

between the bubbles that is much thinner than the spherical volume. Finally, time dependent

coalescence control force can be introduced which will monitor the bubble velocities and

change its value based on the bubble dynamics. Adjusting the algorithm in such a way would

allow the method to simulate the coalescence process closer to what is observed

experimentally.

 Another option to make the algorithm simulate coalescence events with increased accuracy

would be to update the coalescence time model used. The model developed by Prince and

Blanch [7] was developed without considering the approach velocity of the bubbles. It was

also not able to accurately predict coalescence rates when electrolyte solutions with salt

concentrations past the transition concentration. The inability of the model to predict the rates

was attributed to the effects of turbulence on surface mobility, the dynamics of bubble

collisions, and the solute concentration at the gas-liquid interface of the coalescing bubbles. A

better time model that includes these effects could be implemented to make the time tracking

portion of the algorithm closer to experimentally observed values.

 Currently, the algorithm requires the user to provide the bubble radius and the estimated

number of coalescence events to perform properly. The algorithm uses the bubble radius for

calculating the limiting curvature values. However, this is redundant information because

www.manaraa.com

57

information on the bubble radius is built into the distance field. By investigating other parts of

the PHASTA code, it would be possible to pull the radius from the distance field information

instead of providing it manually. The estimated number of coalescence events is used to

determine how many times to loop through the portion of the code that identifies multiple

coalescence events. Manually providing this looping value is not the most computationally

efficient. The algorithm could be smarter by developing a portion of the algorithm to adjust

this looping value. It would simple to decrease the looping value if some of the average

coordinate values are not changed from the default value for a specific number of time steps.

It would require more work to add to the looping value if more coalescence events then being

identified are occurring. However, these adjustments would make the algorithm more robust

and easier to use.

 For future development and study, the algorithm could be analyzed for simulations when

the bubbles are no longer spherical. Since the algorithm uses the curvature of the distance field

to identify coalescence events. However, bubbles are only spherical at very small flow

velocities or very small diameters. This adjustment to the algorithm will be necessary if the

study wants some bubbles to coalesce. These coalescence events will increase the bubble

diameter which may make it large enough to start deforming. However, it is undesirable for

the algorithm to identify a false coalescence event due to sharp curvature changes in the bubble

shape.

 Lastly, studies could be more accurately performed by analyzing the influence of bubble

diameter on other aspects of the simulation. One example could be extended to a paper by

Bolotnov [28]. The purpose of the paper was to study the influence of bubbles on turbulence

www.manaraa.com

58

anisotropy. Several ensemble runs had to be performed in this study to limit the number of

coalescence events in each and to provide good approximation for mean bubble diameter. If

this same study were redone, the coalescence control algorithm could be used to prevent all

coalescence events and thus perform it using single run with constant mean bubble diameter.

www.manaraa.com

59

REFERENCES

1. Bolotnov, I. A., Jansen, K. E., Drew, D. A., Oberai, A. A. & Lahey, Jr., R. T., Detached

Direct Numerical Simulation of Turbulent Two-phase Bubbly Channel Flow. Int. J.

Multiphase Flow 37, 647-659 (2011).

2. Sanada, T., Watanabe, M. & Fukano, T., Effects of viscosity on coalescence of a bubble

upon impact with a free surface. Chemical Engineering Science 60, 5372-5384 (2005).

3. Chen, J.-D., Hahn, P. S. & Slattery, J. C., Coalescence time for a small drop or bubble

at a fluid-fluid interface. AIChE Journal 30 (4), 622-630 (1984).

4. Lee, J. C. & Hodgson, T. D., Film flow and coalescence - I basic relations, film shape

and criteria for interface mobility. Chemical Engineering Science 23, 1375-1397

(1968).

5. Li, D., Coalescence between two small bubbles or drops. Journal of Colloid and

Interface Science 163, 108-119 (1994).

6. Marrucci, G., A theory of coalescence. Chemical Engineering Science 24, 975-985

(1969).

7. Prince, M. J. & Blanch, H. W., Bubble coalescence and break-up in air-sparged bubble

columns. AIChE Journal 36 (10), 1485-1499 (1990).

8. Marrucci, G. & Nicodemo, L., Coalescence of gas bubbles in aqueous solutions of

inorganic electrolytes. Chemical Engineering Science 22, 1257-1265 (1967).

9. Lessard, R. R. & Zieminski, S. A., Bubble coalescence and gas transfer in aqueous

electrolytic solutions. Ind. Eng. Chem. Fundam. 10 (2), 260-269 (1971).

10. Cain, F. W. & Lee, J. C., A technique for studying the drainage and rupture of unstable

liquid films formed between two captive bubbles: measurements on KCL solution.

Journal of Colloid and Interface Science 106 (1), 70-85 (1985).

11. Kim, J. W. & Lee, W. K., Coalescence behavior of two bubbles in stagnant liquids.

Journal of Chemical Engineering of Japan 20 (5), 448-453 (1987).

12. Craig, V. S. J., Ninham, B. W. & Pashley, R. M., The effect of electrolytes on bubble

coalescence in water. J. Phys. Chem. 97 (39), 10192-10197 (1993).

www.manaraa.com

60

13. Danov, K. D., Valkovska, D. S. & Kralchevsky, P. A., Hydrodynamic instability of

coalescence in trains of emulsion drops or gas bubbles moving through a narrow

capillary. Journal of Colloid and Interface Science 267, 243-258 (2003).

14. Crabtree, J. R. & Bridgwater, J., Bubble coalescence in viscous liquids. Chemical

Engineering Science 26, 839-851 (1971).

15. de Nevers, N. & Wu, J.-L., Bubble coalescence in viscous fluids. AIChE Journal, 182-

186 (1971).

16. Kirkpatrick, R. D. & Lockett, M. J., The influence of approach velocity on bubble

coalescence. Chemical Engineering Science 29, 2363-2373 (1974).

17. Stewart, C. W., Bubble interaction in low-viscosity liquids. Int. J. Multiphase Flow 21

(6), 1037-1046 (1995).

18. Sanada, T., Sato, A., Shirota, M. & Watanabe, M., Motion and coalescence of a pair of

bubbles rising side by side. Chemical Engineering Science 64, 2659-2671 (2009).

19. Kang, Q., Cui, H. L., Duan, L. & Hu, W. R., Experimental investigation on bubble

coalescence under nonuniform temperature distribution in reduced gravity. Journal of

Colloid and Interface Science 310, 546-549 (2007).

20. Colin, C., Fabre, J. & Dukler, A. E., Gas-liquid flow at microgravity conditions - I:

dispersed bubble and slug flow. Int. J. Multiphase Flow 17 (4), 533-544 (1991).

21. Colin, C., Riou, X. & Fabre, J., Bubble coalescence in gas-liquid flow at microgravity

conditions. Microgravity Sci. Technol. 20, 243-246 (2008).

22. Kamp, A. M., Chesters, A. K., Colin, C. & Fabre, J., Bubble coalescence in turbulent

flows: a mechanistic model for turbulence-induced coalescence applied to microgravity

bubbly pipe flow. International Journal of Multiphase Flow 27, 1363-1396 (2001).

23. Chesters, A. K., The modelling of coalescence processes in fluid-liquid dispersions - a

review of current understanding. Trans. I. Chem. E. 69 (part A), 353-361 (1991).

24. Mattson, M. D. & Mahesh, K., A one-way coupled, euler-lagrangian simulation of

bubble coalescence in a turbulent pipe flow. International Journal of Multiphase Flow

40, 68-82 (2012).

www.manaraa.com

61

25. Olmos, E., Gentric, C., Vial, C., Wild, G. & Midoux, N., Numerical simulation of

multiphase flow in bubble column reactors. influence of bubble coalescence and break-

up. Chemical Engineering Science 56, 6359-6365 (2001).

26. Sommerfeld, M., Bourloutski, E. & Broder, D., Euler/lagrange calculations of bubbly

flows with consideration of bubble coalescence. The Canadian Journal of Chemical

Engineering 81, 508-518 (2003).

27. van den Hengel, E. I. V., Deen, N. G. & Kuipers, J. A. M., Application of coalescence

and breakup models in a discrete bubble model for bubble columns. Ind. Eng. Chem.

Res. 44 (14), 5233-5245 (2005).

28. Bolotnov, I. A., Influence of bubbles on the turbulence anisotropy. Journal of Fluids

Engineering (2013).

29. Dabiri, S., Lu, J. & Tryggvason, G., Transition between regies of a vertical channel

bubbly upflow due to bubble deformability. Physics of Fluids 25, 102110-1 - 102110-

12 (2013).

30. Crowe, C. T., Troutt, T. R. & Chung, J. N., Numerical models for two-phase turbulent

flows. Annu. Rev. Fluid. Mech. 28, 11-43 (1996).

31. van Sint Annaland, M., Dijkhuizen, W., Deen, N. G. & Kuipers, J. A. M., Numerical

simulations of behavior of gas bubbles using a 3-D front tracking method. AIChE

Journal 52 (1), 99-110 (2006).

32. Sussman, M. et al., An adaptive level set approach for incompressible two-phase flows.

J. Computational Physics 148 (1), 81-124 (1999).

33. Unverdi, S. O. & Tryggvason, G., A front-tracking method for viscous, incompressible,

multi-fluid flows. Journal of Computational Physics 100, 25-37 (1992).

34. van Sint Annaland, M., Deen, N. G. & Kuipers, J. A. M., Numerical simulation of gas

bubbles behaviour using a three-dimensional volume of fluid method. Chemical

Engineering Science 60, 2999-3011 (2005).

35. Passandideh-Fard, M. & Farhangi, M. M., A numerical study on bubble rise and

interaction in a viscous liquid, presented at Fifth International Conference on Transport

Phenomena in Multiphase Systems, Bialystok, Poland, 2008.

www.manaraa.com

62

36. Takada, N., Misawa, M., Tomiyama, A. & Hosokawa, S., Simulation of bubble motion

under gravity by lattice boltzmann method. Journal of Nuclear Science and Technology

38 (5), 330-341 (2001).

37. Inamuro, T., Ogata, T., Tajima, S. & Konishi, N., A lattice boltzmann method for

incompressible two-phase flows with large density differences. Journal of

Computational Physics 198, 628-644 (2004).

38. Sussman, M., Smereka, P. & Osher, S., A level set approach for computing solutions to

incompressible two-phase flow. Journal of Computational Physics 114, 146-159

(1994).

39. Osher, S. & Fedkiw, R. P., Level set method: an overview of some recent results.

Journal of Computational Physics 169, 463-502 (2001).

40. Yang, X., James, A. J., Lowengrub, J., Zheng, X. & Cristini, V., An adaptive coupled

level-set/volume-of-fluid interface capturing method for unstructured triangular grids.

Journal of Computational Physics 217, 364-394 (2006).

41. Yu, Z. & Fan, L.-S., Direct simulation of the bouyant rise of bubbles in infinite liquid

uisng level set method. The Canadian Journal of Chemical Engineering 86, 267-265

(2008).

42. Bolotnov, I. A. & Podowski, M. Z., Informing the development of the turbulence

models for bubbly gas/liquid flow using interface tracking simulations, presented at

ANS Winter Meeting and Nuclear Technology Exposition, San Diego, CA, 2012.

43. Sussman, M., Fatemi, E., Smereka, P. & Osher, S., An improved level set method for

incompressible two-phase flows. Journal of Computational Fluids 27 (5), 663-680

(1998).

44. Sussman, M. & Fatemi, E., An efficient, interface-preserving level set redistancing

algorithm and its application to interfacial incompressible fluid flow. Siam Journal on

Scientific Computing 20 (4), 1165-1191 (1999).

45. Sethian, J. A., Level set methods and fast marching methods (Cambridge University

Press, Cambridge, 1999).

www.manaraa.com

63

APPENDIX

www.manaraa.com

64

Appendix A

Code added to e3ivar.f:

c!.... Matt Talley's Bubble Coalescence Control

 if (coalcon.eq.1) then

! if (update_coalcon.eq.1) then

 xx = zero

 do n = 1,nenl

 xx(:,1) = xx(:,1) + shpfun(:,n) * xl(:,n,1)

 xx(:,2) = xx(:,2) + shpfun(:,n) * xl(:,n,2)

 xx(:,3) = xx(:,3) + shpfun(:,n) * xl(:,n,3)

 enddo

 bubradius = coalbubrad + 6.0d0*(epsilon_ls_tmp)

 bubradius2 = coalbubrad + epsilon_ls_tmp

 PtsPerDiam = (2.0d0*coalbubrad) / (epsilon_ls_tmp/1.8d0)

 Curvlim = -1.8083d2 * PtsPerDiam + 1.2873d3

! endif

 endif

c! MaxCurv = 30.0 ! Max curvature allowed for survace tension force usage,

Igor, April 2010

 do i = 1, npro

 weber(i) = Bo

 Ccurv = divqi(i,idflow+1)

c!.... Matt Talley's Bubble Coalescence Contorl

 if (coalcon.eq.1) then

! if (update_coalcon.eq.1) then

 if (((Sclr(i).ge.(1.0d0*epsilon_ls_tmp)).and.

 & (Sclr(i).le.(6.0d0*epsilon_ls_tmp)))

 & .and.((Ccurv.ge.(-1.45d0*Curvlim)).or.

 & (Ccurv.le.(1.45d0*Curvlim)))) then

 xarray(i) = xx(i,1)

 yarray(i) = xx(i,2)

 zarray(i) = xx(i,3)

 coordtag(i) = 1

 endif

! endif ! update_coalcon

 if (coaltimtrak.eq.1) then

 do k = 1, coalest

 do n = 1,nenl

 appvolume(i,n,k) = sqrt((xl(i,n,1)

 & -avgxcoordold(k))**2 +

 & (xl(i,n,2)-avgycoordold(k))**2 +

 & (xl(i,n,3)-avgzcoordold(k))**2)

 if (appvolume(i,n,k).le.5.0d0*epsilon_ls_tmp)

 & then

www.manaraa.com

65

 weber(i) = CoalInvSigma !Tension

 endif

 enddo

 enddo

 else

 do k = 1, coalest

 if (coalcon_rem(k).eq.0) then

 do n = 1,nenl

 appvolume(i,n,k) = sqrt((xl(i,n,1)

 & -avgxcoordold(k))**2 +

 & (xl(i,n,2)-avgycoordold(k))**2 +

 & (xl(i,n,3)-avgzcoordold(k))**2)

 if (appvolume(i,n,k).le.5.0d0*epsilon_ls_tmp)

 & then

 weber(i) = CoalInvSigma !Tension

 endif

 enddo

 endif

 enddo

 endif ! coaltimtrak

 endif ! coalcon

Code added to itrdrv.f;

c!....Matt Talley's Coalescence Contorl

 if (coalcon.eq.1) then

 if (coaltimtrak.eq.1) then

 do k = 1, coalest

 avgxcoordold(k) = avgxcoordf(k)

 avgycoordold(k) = avgycoordf(k)

 avgzcoordold(k) = avgzcoordf(k)

 if (avgxcoordold(k).gt.-1.0d3) then

 if (myrank.eq.master) write(*,*) 'Coalescence',

 & ' Event #: ', k

 if (myrank.eq.master) write(*,*) 'x average',

 & ' position:', avgxcoordold(k)

 if (myrank.eq.master) write(*,*) 'y average',

 & ' position:', avgycoordold(k)

 if (myrank.eq.master) write(*,*) 'z average',

 & ' position:', avgzcoordold(k)

 endif

 enddo ! k

 else

 itrtimestp = Delt(1)

 call CoalescAppTime (avgxcoordf, avgycoordf,

 & avgzcoordf, avgxcoordold2,

 & avgycoordold2, avgzcoordold2,

www.manaraa.com

66

 & app_time, itrtimestp)

 endif ! coaltimtrak

 endif ! coalcon

Coalescence Event Identification Subroutine (coalesccon.f):

 subroutine CoalescCon (xarray, yarray, zarray, coordtag,

 & bubradius, bubradius2, avgxcoordf,

 & avgycoordf, avgzcoordf)

c

c--

c

c This routine computes the center coordinates for coalescence events

c during the simulation.

c

c Matt Talley, Winter 2014.

c--

c

 use pvsQbi ! brings in NABI

 use stats !

 use pointer_data ! brings in the pointers for the blocked arrays

 use local_mass

 use spat_var_eps

 use timedata ! for iblkts usage

c

 include "common.h"

 include "mpif.h"

c

 real*8 xarray(ibksiz), yarray(ibksiz), zarray(ibksiz)

 integer coordtag(ibksiz) !Passed arrays from e3ivar

 real*8 avgxcoord, avgycoord, avgzcoord, avgvectdist, !Coalescence control

center pt

 & avgxcoordf(coalest), avgycoordf(coalest),

 & avgzcoordf(coalest)

 real*8 totxcoordsum, totycoordsum, totzcoordsum, totvectdistsum,

 & totxcoordsum_mult(coalest), totycoordsum_mult(coalest),

 & totzcoordsum_mult(coalest) !Total sum of coordinates

 integer totcoordcount, totvectnumbsum,

 & totcoordcount_mult(coalest) !Total number or coordinates

 real*8 xcoordsum, ycoordsum, zcoordsum, vectdistsum,

 & xcoordsum_mult(coalest), ycoordsum_mult(coalest),

 & zcoordsum_mult(coalest) !Sum from each processor

 integer totcoordnumb, vectnumbsum, diffnumbsum,

 & totcoordnumb_mult(coalest) !Total number from each processor

 real*8 globalxcoord(ibksiz,nelblk), globalycoord(ibksiz,nelblk),

 & globalzcoord(ibksiz,nelblk), vectdist(ibksiz,nelblk),

 & xvectcoord(ibksiz,nelblk), yvectcoord(ibksiz,nelblk),

 & zvectcoord(ibksiz,nelblk), vectangle(ibksiz,nelblk),

 & vectdist2(ibksiz,nelblk) !Arrays from each processor

 real*8 dotmax(ibksiz,nelblk), vectdist_max_tmp, vect_max_xcoord,

 & vect_max_ycoord, vect_max_zcoord, vect_max_xcoord_tmp,

www.manaraa.com

67

 & vect_max_ycoord_tmp, vect_max_zcoord_tmp

 real*8 phi_max, bubradius, bubradius2, length_bside_tri,

 & angle1, angle2, hypot_len_1, hypot_len_2,

 & avgcoordfdist(coalest,coalest)

 integer totcoordnumbarray(ibksiz,nelblk),

 & vectnumb(ibksiz,nelblk)

 integer intone, vect_max_i, vect_max_iblk,

 & sign_of_vect_max_xcoord, sign_of_vect_max_ycoord,

 & sign_of_vect_max_zcoord, sign_of_vect_max_xcoord_tmp,

 & sign_of_vect_max_ycoord_tmp, sign_of_vect_max_zcoord_tmp

 integer coalesc_tag(ibksiz,nelblk), consol_tag(coalest),

 & avgcoordf_erase_tag(coalest)

c Initialize bubble coalecence control variables

 xcoordsum = 0.0d0 !Matt T.

 ycoordsum = 0.0d0

 zcoordsum = 0.0d0

 totcoordnumb = 0

 globalxcoord(:,:) = zero

 globalycoord(:,:) = zero

 globalzcoord(:,:) = zero

 totcoordnumbarray(:,:) = 0

 avgxcoord = -1.0d3

 avgycoord = -1.0d3

 avgzcoord = -1.0d3

 totxcoordsum = 0.0d0

 totycoordsum = 0.0d0

 totzcoordsum = 0.0d0

 totcoordcount = 0

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

c....!Storing the coordinates into each globalcoord array and counting how many

c....!points are in each array. Then summing up each x, y, and z coordinate

c....!array to get a sum of each x, y, and z coordinate

 do i = 1, npro !Matt T.

 globalxcoord(i,iblk) = xarray(i)

 globalycoord(i,iblk) = yarray(i)

 globalzcoord(i,iblk) = zarray(i)

 totcoordnumbarray(i,iblk) = coordtag(i)

 enddo

 do m = 1, npro

 xcoordsum = xcoordsum + globalxcoord(m,iblk)

 ycoordsum = ycoordsum + globalycoord(m,iblk)

 zcoordsum = zcoordsum + globalzcoord(m,iblk)

 totcoordnumb = totcoordnumb + totcoordnumbarray(m,iblk)

 enddo

www.manaraa.com

68

 enddo

 if (numpe.gt.1) then !Matt T.

 call MPI_ALLREDUCE(xcoordsum, totxcoordsum, 1,

 & MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr)

 call MPI_ALLREDUCE(ycoordsum, totycoordsum, 1,

 & MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr)

 call MPI_ALLREDUCE(zcoordsum, totzcoordsum, 1,

 & MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr)

 call MPI_ALLREDUCE(totcoordnumb, totcoordcount, 1,

 & MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, ierr)

 if (totcoordcount.gt.0) then

 avgxcoord = totxcoordsum / DBLE(totcoordcount) !Matt T.

 avgycoord = totycoordsum / DBLE(totcoordcount)

 avgzcoord = totzcoordsum / DBLE(totcoordcount)

 endif

 else

 if (totcoordnumb.gt.0) then

 avgxcoord = xcoordsum / DBLE(totcoordnumb) !Matt T.

 avgycoord = ycoordsum / DBLE(totcoordnumb)

 avgzcoord = zcoordsum / DBLE(totcoordnumb)

 endif

 endif

c....!Begin the check for multiple coalescence events

 vectdistsum = 0.0d0

 vectnumbsum = 0

 vectdist(:,:) = 0.0d0

 vectnumb(:,:) = 0

 totvectdistsum = 0

 avgvectdist = 0.0d0

 totvectnumbsum = 0

 intone = 1

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

 if (totcoordnumbarray(i,iblk).eq.intone) then

 vectdist(i,iblk) = sqrt((globalxcoord(i,iblk) –

 & avgxcoord)**2 + (globalycoord(i,iblk) - avgycoord)**2

 & + (globalzcoord(i,iblk) - avgzcoord)**2)

 vectnumb(i,iblk) = 1

 endif

 enddo ! i

 do m = 1, npro

 vectdistsum = vectdistsum + vectdist(m,iblk)

 vectnumbsum = vectnumbsum + vectnumb(m,iblk)

 enddo ! m

 enddo

www.manaraa.com

69

 if (numpe.gt.1) then

 call MPI_ALLREDUCE(vectdistsum, totvectdistsum, 1,

 & MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr)

 call MPI_ALLREDUCE(vectnumbsum, totvectnumbsum, 1,

 & MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, ierr)

 if (totvectnumbsum.gt.0) then

 avgvectdist = totvectdistsum / DBLE(totvectnumbsum)

 endif

 else

 if (vectnumbsum.gt.0) then

 avgvectdist = vectdistsum / DBLE(vectnumbsum)

 endif

 endif

c....!Initialize new variables for the angle between vectors

 coalesc_tag(:,:) = 0

 xvectcoord(:,:) = 0.0d0

 yvectcoord(:,:) = 0.0d0

 zvectcoord(:,:) = 0.0d0

 xcoordsum_mult(:) = 0.0d0

 ycoordsum_mult(:) = 0.0d0

 zcoordsum_mult(:) = 0.0d0

 totcoordnumb_mult(:) = 0

 totxcoordsum_mult(:) = 0.0d0

 totycoordsum_mult(:) = 0.0d0

 totzcoordsum_mult(:) = 0.0d0

 totcoordcount_mult(:) = 0

 if ((avgxcoord.gt.-1.0d3).and.(avgvectdist.ge.bubradius)) then

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

 if (totcoordnumbarray(i,iblk).eq.intone) then

 xvectcoord(i,iblk) = globalxcoord(i,iblk) -

 & avgxcoord

 yvectcoord(i,iblk) = globalycoord(i,iblk) -

 & avgycoord

 zvectcoord(i,iblk) = globalzcoord(i,iblk) -

 & avgzcoord

 endif

 enddo

 enddo

 do k = 1, coalest

c....!Values to be re-initialized for each coalescence

 sign_of_vect_max_xcoord = 0

 sign_of_vect_max_ycoord = 0

 sign_of_vect_max_zcoord = 0

 sign_of_vect_max_xcoord_tmp = 0

 sign_of_vect_max_ycoord_tmp = 0

www.manaraa.com

70

 sign_of_vect_max_zcoord_tmp = 0

 vect_max_xcoord = 0.0d0

 vect_max_ycoord = 0.0d0

 vect_max_zcoord = 0.0d0

 vect_max_xcoord_tmp = 0.0d0

 vect_max_ycoord_tmp = 0.0d0

 vect_max_zcoord_tmp = 0.0d0

 vectdist_max = 0.0d0

 vectdist_max_tmp = 0.0d0

 vect_max_i = 0

 vect_max_iblk = 0

 vectangle(:,:) = 0.0d0

 dotmax(:,:) = 0.0d0

 phi_max = 0.0d0

 length_bside_tri = 0.0d0

 vectdist2(:,:) = 0.0d0

 angle1 = 0.0d0

 angle2 = 0.0d0

 hypot_len_1 = 0.0d0

 hypot_len_2 = 0.0d0

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

 if ((coalesc_tag(i,iblk).eq.0).and.

 & (vectdist(i,iblk).gt.vectdist_max)) then

 vectdist_max = vectdist(i,iblk)

 endif

 enddo

 enddo

 if (numpe.gt.1) then

 call MPI_ALLREDUCE (vectdist_max,vectdist_max_tmp,1,

 & MPI_DOUBLE_PRECISION,MPI_MAX, MPI_COMM_WORLD,ierr)

 else

 vectdist_max_tmp = vectdist_max

 endif

 vectdist_max = vectdist_max_tmp

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

 if ((coalesc_tag(i,iblk).eq.0).and.

 & (abs(vectdist(i,iblk) - vectdist_max).lt.1.0d-24)) then

 vect_max_i = i

 vect_max_iblk = iblk !Values only known to one processor

 exit

 endif

www.manaraa.com

71

 enddo

 enddo

 if ((vect_max_i.gt.0).and.(vect_max_iblk.gt.0)) then

 vect_max_xcoord = xvectcoord(vect_max_i,vect_max_iblk)

 vect_max_ycoord = yvectcoord(vect_max_i,vect_max_iblk)

 vect_max_zcoord = zvectcoord(vect_max_i,vect_max_iblk)

 endif

 if (vect_max_xcoord.lt.0.0d0) then

 sign_of_vect_max_xcoord = 1

 endif

 if (vect_max_ycoord.lt.0.0d0) then

 sign_of_vect_max_ycoord = 1

 endif

 if (vect_max_zcoord.lt.0.0d0) then

 sign_of_vect_max_zcoord = 1

 endif

 call MPI_ALLREDUCE (abs(vect_max_xcoord),

 & vect_max_xcoord_tmp,1,MPI_DOUBLE_PRECISION,MPI_MAX,

 & MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE (abs(vect_max_ycoord),

 & vect_max_ycoord_tmp,1,MPI_DOUBLE_PRECISION,MPI_MAX,

 & MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE (abs(vect_max_zcoord),

 & vect_max_zcoord_tmp,1,MPI_DOUBLE_PRECISION,MPI_MAX,

 & MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE (sign_of_vect_max_xcoord,

 & sign_of_vect_max_xcoord_tmp,1,MPI_INTEGER,MPI_MAX,

 & MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE (sign_of_vect_max_ycoord,

 & sign_of_vect_max_ycoord_tmp,1,MPI_INTEGER,MPI_MAX,

 & MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE (sign_of_vect_max_zcoord,

 & sign_of_vect_max_zcoord_tmp,1,MPI_INTEGER,MPI_MAX,

 & MPI_COMM_WORLD,ierr)

 if (sign_of_vect_max_xcoord_tmp.eq.intone) then

 vect_max_xcoord = -vect_max_xcoord_tmp

 else

 vect_max_xcoord = vect_max_xcoord_tmp

 endif

 if (sign_of_vect_max_ycoord_tmp.eq.intone) then

 vect_max_ycoord = -vect_max_ycoord_tmp

 else

 vect_max_ycoord = vect_max_ycoord_tmp

 endif

 if (sign_of_vect_max_zcoord_tmp.eq.intone) then

 vect_max_zcoord_tmp = -vect_max_zcoord_tmp

 else

 vect_max_zcoord = vect_max_zcoord_tmp

 endif

www.manaraa.com

72

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

 if ((coalesc_tag(i,iblk).eq.0).and.

 & (totcoordnumbarray(i,iblk).eq.intone)) then

 dotmax(i,iblk) = xvectcoord(i,iblk)

 & * vect_max_xcoord

 & + yvectcoord(i,iblk) * vect_max_ycoord

 & + zvectcoord(i,iblk) * vect_max_zcoord

 if ((dotmax(i,iblk) / (vectdist(i,iblk)

 & * vectdist_max)).gt.1.0d0) then

 vectangle(i,iblk) = acos(1.0d0)

 else if ((dotmax(i,iblk) / (vectdist(i,iblk)

 & * vectdist_max)).lt.-1.0d0) then

 vectangle(i,iblk) = acos(-1.0d0)

 else

 vectangle(i,iblk) = acos(dotmax(i,iblk)

 & / (vectdist(i,iblk) * vectdist_max))

 endif

 endif

 enddo

 enddo

c!....Determine the distance between each vector and vector_max

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

 if ((coalesc_tag(i,iblk).eq.0).and.

 & (totcoordnumbarray(i,iblk).eq.intone)) then

 vectdist2(i,iblk) = sqrt((xvectcoord(i,iblk) -

 & vect_max_xcoord)**2 + (yvectcoord(i,iblk) -

 & vect_max_ycoord)**2 + (zvectcoord(i,iblk) -

 & vect_max_zcoord)**2)

 endif

 enddo ! i

 enddo ! iblk

c....!Initialze the first tag based on the proper processor and tag the rest

 if ((vect_max_i.gt.0).and.(vect_max_iblk.gt.0)) then

 coalesc_tag(vect_max_i,vect_max_iblk) = k

 endif

c!....Determine the maximum angle and assign event numbers

 length_bside_tri = sqrt(vectdist_max**2 -

 & (2.0d0*bubradius)**2)

 if (vectdist_max**2.ge.(2.0d0*bubradius)**2) then

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

www.manaraa.com

73

 if ((totcoordnumbarray(i,iblk).eq.intone).and.

 & (vectdist(i,iblk).ge.2.0d0*bubradius)) then

 phi_max = acos(length_bside_tri /

 & vectdist_max)

 endif

 if ((totcoordnumbarray(i,iblk).eq.intone).and.

 & (vectdist(i,iblk).lt.2.0d0*bubradius)) then

 phi_max = asin((2.0d0*bubradius) /

 & vectdist_max)

 endif

 if ((coalesc_tag(i,iblk).eq.0).and.

 & (totcoordnumbarray(i,iblk).eq.intone)) then

 if ((abs(vectdist(i,iblk)-vectdist_max).le.

 & (2.0d0*bubradius)).and.

 & (vectangle(i,iblk).le.phi_max)) then

 coalesc_tag(i,iblk) = k

 endif

 endif

 enddo ! i

 enddo ! iblk

 else

c!....Calculate the maximum angle at the 1st epsilon contour

 if (vectdist_max.gt.0.0d0) then

 angle1 = acos(bubradius2 / vectdist_max)

 hypot_len_1 = vectdist_max*sin(angle1)

 hypot_len_2 = 2.0d0*bubradius - hypot_len_1

 angle2 = atan(hypot_len_2 / bubradius2)

 phi_max = angle1 + angle2

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

 if ((coalesc_tag(i,iblk).eq.0).and.

 & (totcoordnumbarray(i,iblk).eq.intone)) then

 if ((vectdist2(i,iblk).le.

 & (2.0d0*bubradius)).and.

 & (vectangle(i,iblk).le.phi_max)) then

 coalesc_tag(i,iblk) = k

 endif

 endif

 enddo ! i

 enddo ! iblk

 endif

 endif

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do m = 1, npro

www.manaraa.com

74

 if (coalesc_tag(m,iblk).eq.k) then

 xcoordsum_mult(k) = xcoordsum_mult(k) +

 & globalxcoord(m,iblk)

 ycoordsum_mult(k) = ycoordsum_mult(k) +

 & globalycoord(m,iblk)

 zcoordsum_mult(k) = zcoordsum_mult(k) +

 & globalzcoord(m,iblk)

 totcoordnumb_mult(k) = totcoordnumb_mult(k) +

 & totcoordnumbarray(m,iblk)

 endif

 enddo ! m

 enddo ! iblk

 if (numpe > 1) then !Matt T.

 call MPI_ALLREDUCE(xcoordsum_mult(k),

 & totxcoordsum_mult(k),1,MPI_DOUBLE_PRECISION,

 & MPI_SUM, MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE(ycoordsum_mult(k),

 & totycoordsum_mult(k),1,MPI_DOUBLE_PRECISION,

 & MPI_SUM, MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE(zcoordsum_mult(k),

 & totzcoordsum_mult(k),1,MPI_DOUBLE_PRECISION,

 & MPI_SUM, MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE(totcoordnumb_mult(k),

 & totcoordcount_mult(k),1,MPI_INTEGER,MPI_SUM,

 & MPI_COMM_WORLD, ierr)

 if (totcoordcount_mult(k).gt.0) then

 avgxcoordf(k) = totxcoordsum_mult(k) /

 & DBLE(totcoordcount_mult(k)) !Matt T.

 avgycoordf(k) = totycoordsum_mult(k) /

 & DBLE(totcoordcount_mult(k))

 avgzcoordf(k) = totzcoordsum_mult(k) /

 & DBLE(totcoordcount_mult(k))

 endif

 else

 if (totcoordnumb_mult(k).gt.0) then

 avgxcoordf(k) = xcoordsum_mult(k) /

 & DBLE(totcoordnumb_mult(k)) !Matt T.

 avgycoordf(k) = ycoordsum_mult(k) /

 & DBLE(totcoordnumb_mult(k))

 avgzcoordf(k) = zcoordsum_mult(k) /

 & DBLE(totcoordnumb_mult(k))

 endif

 endif ! numpe

 enddo ! coalest

c!....Consolidate any average points that are too close to one another

 avgcoordfdist(:,:) = 2.0d0*bubradius

 consol_tag(:) = 0

 avgcoordf_erase_tag(:) = 0

 do k1 = 1, (coalest-1)

 if (avgxcoordf(k1).gt.-1.0d3) then

 do k2 = (k1+1), coalest

www.manaraa.com

75

 avgcoordfdist(k1,k2) = sqrt((avgxcoordf(k1) -

 & avgxcoordf(k2))**2 + (avgycoordf(k1) -

 & avgycoordf(k2))**2 + (avgzcoordf(k1) -

 & avgzcoordf(k2))**2)

 enddo

 endif

 enddo

 do k1 = 1, (coalest-1)

 do k2 = (k1+1), coalest

 if (avgcoordfdist(k1,k2).lt.(2.0d0*bubradius)) then

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do i = 1, npro

 if (coalesc_tag(i,iblk).eq.k2) then

 coalesc_tag(i,iblk) = k1

 endif

 enddo ! i

 enddo ! iblk

 consol_tag(k1) = 1

 avgcoordf_erase_tag(k2) = 1

 endif ! avgcoordfdist

 enddo ! k2

 enddo ! k1

 do k1 = 1, (coalest-1)

 do k2 = (k1+1), coalest

 if (avgcoordf_erase_tag(k2).eq.intone) then

 avgxcoordf(k2) = -1.0d3

 avgycoordf(k2) = -1.0d3

 avgzcoordf(k2) = -1.0d3

 endif

 enddo ! k2

 if (consol_tag(k1).eq.intone) then

 xcoordsum_mult(k1) = 0.0d0

 ycoordsum_mult(k1) = 0.0d0

 zcoordsum_mult(k1) = 0.0d0

 totcoordnumb_mult(k1) = 0.0d0

 totxcoordsum_mult(k1) = 0.0d0

 totycoordsum_mult(k1) = 0.0d0

 totzcoordsum_mult(k1) = 0.0d0

 totcoordcount_mult = 0.0d0

 do iblk = 1, nelblk

 iel = lcblk(1,iblk)

 npro = lcblk(1,iblk+1) - iel

 do m = 1, npro

 if (coalesc_tag(m,iblk).eq.k1) then

 xcoordsum_mult(k1) = xcoordsum_mult(k1) +

 & globalxcoord(m,iblk)

 ycoordsum_mult(k1) = ycoordsum_mult(k1) +

www.manaraa.com

76

 & globalycoord(m,iblk)

 zcoordsum_mult(k1) = zcoordsum_mult(k1) +

 & globalzcoord(m,iblk)

 totcoordnumb_mult(k1) = totcoordnumb_mult(k1)

 & + totcoordnumbarray(m,iblk)

 endif

 enddo !m

 enddo !iblk

 if (numpe > 1) then !Matt T.

 call MPI_ALLREDUCE(xcoordsum_mult(k1),

 & totxcoordsum_mult(k1),1,MPI_DOUBLE_PRECISION,

 & MPI_SUM, MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE(ycoordsum_mult(k1),

 & totycoordsum_mult(k1),1,MPI_DOUBLE_PRECISION,

 & MPI_SUM, MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE(zcoordsum_mult(k1),

 & totzcoordsum_mult(k1),1,MPI_DOUBLE_PRECISION,

 & MPI_SUM, MPI_COMM_WORLD,ierr)

 call MPI_ALLREDUCE(totcoordnumb_mult(k1),

 & totcoordcount_mult(k1),1,MPI_INTEGER,MPI_SUM,

 & MPI_COMM_WORLD, ierr)

 if (totcoordcount_mult(k1).gt.0) then

 avgxcoordf(k1) = totxcoordsum_mult(k1) /

 & DBLE(totcoordcount_mult(k1))

 avgycoordf(k1) = totycoordsum_mult(k1) /

 & DBLE(totcoordcount_mult(k1))

 avgzcoordf(k1) = totzcoordsum_mult(k1) /

 & DBLE(totcoordcount_mult(k1))

 endif

 else

 if (totcoordnumb_mult(k1).gt.0) then

 avgxcoordf(k1) = xcoordsum_mult(k1) /

 & DBLE(totcoordnumb_mult(k1))

 avgycoordf(k1) = ycoordsum_mult(k1) /

 & DBLE(totcoordnumb_mult(k1))

 avgzcoordf(k1) = zcoordsum_mult(k1) /

 & DBLE(totcoordnumb_mult(k1))

 endif

 endif ! numpe

 endif ! consoltag

 enddo ! k1

 else

 avgxcoordf(1) = avgxcoord

 avgycoordf(1) = avgycoord

 avgzcoordf(1) = avgzcoord

 endif !avgxcoord and avgvectdist

 end

Coalescence Event Time Tracking Subroutine (coalescapptime.f):

 subroutine CoalescAppTime(avgxcoordf, avgycoordf, avgzcoordf,

www.manaraa.com

77

 & avgxcoordold2, avgycoordold2,

 & avgzcoordold2, app_time, itrtimestp)

c

c--

c

c This routine assigns the new center coordinates for the coalescence

c control and tracks the amount of time the coalescence force has

c been active.

c

c Matt Talley, Winter 2014.

c--

c

 use pvsQbi ! brings in NABI

 use stats !

 use pointer_data ! brings in the pointers for the blocked arrays

 use local_mass

 use spat_var_eps

 use timedata ! for iblkts usage

c

 include "common.h"

 include "mpif.h"

c

 real*8 avgxcoordf(coalest), avgycoordf(coalest),

 & avgzcoordf(coalest), avgxcoordold2(coalest),

 & avgycoordold2(coalest), avgzcoordold2(coalest),

 & avgcoorddist(coalest,coalest),

 & app_time(coalest,2)

 real*8 itrtimestp, coalesc_time

 integer event_tag(coalest,coalest)

c!.... Initialize variables

 event_tag(:,:) = 0

 app_time(:,1) = 0.0d0

 avgcoorddist(:,:) = 1.0d4

 coalesc_time = 0.0d0

c!.... Calculate the maximum coalescence time

 coalesc_time = sqrt((((coalbubrad)**3) * datmat(1,1,1))

 & / (16.0d0 *(1/Bo))) * log(1.0d-4/1.0d-8)

 do k1 = 1, coalest

 avgxcoordold(k1) = avgxcoordf(k1)

 avgycoordold(k1) = avgycoordf(k1)

 avgzcoordold(k1) = avgzcoordf(k1)

c!....Track the amount of time the Coalescence Control Algorithm has

c!....active for each different event

 if (app_time(k1,2).le.coalesc_time) then

 if (avgxcoordold2(k1).gt.-1.0d3) then

 do k2 = 1, coalest

 avgcoorddist(k1,k2) = sqrt((avgxcoordold(k2) -

 & avgxcoordold2(k1))**2 + (avgycoordold(k2) -

 & avgycoordold2(k1))**2 + (avgzcoordold(k2) -

 & avgzcoordold2(k1))**2)

 enddo ! k2

www.manaraa.com

78

 do k2 = 1, coalest

 if ((avgcoorddist(k1,k2).lt.coalbubrad).and.

 & (event_tag(k1,k2).eq.0)) then

 app_time(k2,1) = app_time(k1,2) + itrtimestp/2.0d0

 event_tag(k1,:) = 1

 event_tag(:,k2) = 1

 coalcon_rem(k1) = 0

 if (myrank.eq.master) write(*,*) 'Coalescence',

 & ' Event #: ',k1,' to ',k2

 if (myrank.eq.master) write(*,*) 'x average',

 & ' position:', avgxcoordold(k2)

 if (myrank.eq.master) write(*,*) 'y average',

 & ' position:', avgycoordold(k2)

 if (myrank.eq.master) write(*,*) 'z average',

 & ' position:', avgzcoordold(k2)

 endif

 enddo ! k2

 do k2 = 1, coalest

 if (event_tag(k1,k2).eq.0) then

 if ((avgcoorddist(k1,k2).gt.coalbubrad).and.

 & (avgcoorddist(k1,k2).lt.1.0d4)) then

 app_time(k1,2) = 0.0d0

 coalcon_rem(k1) = 1

 event_tag(k1,:) = 1

 if (myrank.eq.master) write(*,*) 'Old',

 & ' Coalescence Event #: ',k1,' has ended',

 & ' because they bounced off one another'

 endif

 endif

 enddo ! k2

 endif

 else

 if (avgxcoordold2(k1).gt.-1.0d3) then

 do k2 = 1, coalest

 avgcoorddist(k1,k2) = sqrt((avgxcoordold(k2) -

 & avgxcoordold2(k1))**2 + (avgycoordold(k2) -

 & avgycoordold2(k1))**2 + (avgzcoordold(k2) -

 & avgzcoordold2(k1))**2)

 enddo ! k2

 do k2 = 1, coalest

 if ((avgcoorddist(k1,k2).lt.coalbubrad).and.

 & (event_tag(k1,k2).eq.0)) then

 app_time(k2,1) = app_time(k1,2) + itrtimestp/2.0d0

 event_tag(k1,:) = 1

 event_tag(:,k2) = 1

 coalcon_rem(k1) = 1

 if (myrank.eq.master) write(*,*) 'Coalescence',

 & ' Event #: ',k1,' to ',k2,' has exceeded the',

 & ' drainage time and the force is being removed.'

 endif

 enddo ! k2

 do k2 = 1, coalest

www.manaraa.com

79

 if (event_tag(k1,k2).eq.0) then

 if ((avgcoorddist(k1,k2).gt.coalbubrad).and.

 & (avgcoorddist(k1,k2).lt.1.0d4)) then

 app_time(k1,2) = 0.0d0

 coalcon_rem(k1) = 1

 event_tag(k1,:) = 1

 if (myrank.eq.master) write(*,*) 'Old',

 & ' Coalescence Event #: ',k1,' has ended'

 endif

 endif

 enddo ! k2

 endif

 endif !(app_time)

 if (app_time(k1,2).le.coalesc_time) then

 if (avgxcoordold2(k1).le.-1.0d3) then

 do k2 = 1, coalest

 if ((event_tag(k1,k2).eq.0).and.

 & (avgxcoordold(k2).gt.-1.0d3)) then

 app_time(k2,1) = itrtimestp/2.0d0

 event_tag(:,k2) = 1

 coalcon_rem(k1) = 0

 if (myrank.eq.master) write(*,*) 'New',

 & ' Coalescence Event #: ',k2

 if (myrank.eq.master) write(*,*) 'x average',

 & ' position:', avgxcoordold(k2)

 if (myrank.eq.master) write(*,*) 'y average',

 & ' position:', avgycoordold(k2)

 if (myrank.eq.master) write(*,*) 'z average',

 & ' position:', avgzcoordold(k2)

 endif

 enddo !k2

 endif

 endif

 enddo ! k1

 app_time(:,2) = app_time(:,1)

 avgxcoordold2(:) = avgxcoordold(:)

 avgycoordold2(:) = avgycoordold(:)

 avgzcoordold2(:) = avgzcoordold(:)

 end

